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Abstract 

Consanguinity or inter-cousin marriage is a phenomenon quite prevalent in certain regions around the 

globe. Consanguineous parents have a higher risk of having offspring with congenital disorders. It is difficult to 

model large scale consanguineous parental populations because of disparate cultural issues unique to regions and 

cultures across the globe. Although consanguinity has previously been studied as a social problem, it has not been 

modeled from a biological perspective.  Discrete Event System Specification (DEVS) is a powerful modeling 

formalism for the study of intricate details of real-world complex systems.  In this paper, we have developed a 

DEVS model to get an insight into the role of consanguineous marriages in the evolution of congenital disorders 

in a population.  As proof-of-concept, we further developed a consanguinity simulation model in Simio simulation 

software. Simulation results validated using population growth data show the effectiveness of this approach in the 

modeling of consanguinity in populations. 
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1. Introduction 

 

A consanguineous or inter-cousin marriage is a cultural tradition in many societies 

around the world [1]. A consanguineous marriage is formally defined as a marriage which is 

“solemnized among persons descending from the same stock or common ancestor with close 

biological relations” [2]. Although consanguinity may have some positive effects such as 

increase in specific measures of population fitness [3], primarily, it has been known to lead to 

an increased rate of birth defects, manifesting as severe recessive disorders [4-7].  Moreover, 

various studies have pointed out that consanguinity can lower many population fitness factors 

[8-10].  Despite this, inter-cousin marriages are prevailing and in fact spreading because of 

their socioeconomic usefulness amongst diverse populations.  

Outside its social and cultural context, consanguinity from a biological perspective has 

not been modeled in the past.  Computational modeling and simulation techniques have 

previously proven useful in developing insights and understanding of the dynamics of complex 

biological systems [11, 12]. Large-scale consanguineous parental population is in essence, a 

possible domain for the application of simulation. Socially consanguineous population patterns 

tend to emerge within large segments of geographic areas despite cultural, linguistic and 

religious heterogeneity [13, 14], thereby making consanguinity modeling a challenging 

problem.  Discrete Event System Specification (DEVS) formalism [15], a formal modeling and 

simulation framework,  has previously been successfully exploited as a framework for 

modeling complex computer systems and, at times, certain natural and biological systems [16, 
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17].  However, to the best of our knowledge, DEVS has not been previously used to model 

consanguinity.  

The goal of the present study was to examine the role of consanguineous marriages in 

causing congenital defects using a modeling and simulation approach. With a dearth of 

modeling and simulation studies in the domain of consanguinity, there is a need to develop a 

fundamental formalism for modeling the complex system associated with congenital defect 

spread due to consanguinity. In this paper, we develop a DEVS framework for the formal 

modeling of consanguinity. As proof-of-concept, we demonstrate conversion of the formal 

model into an actual simulation model using Simio simulation software [18].   Validation of 

this model using real-world data shows that DEVS can be used effectively to model biological 

problems and Simio software can be useful for modeling complex biological and social 

problems. 

 

2. Background 

 

Consanguinity has been practiced in many cultures to secure certain family benefits such 

as dissemination of wealth among the same family, stability and better future [19, 20].  

However, it has also been well demonstrated that consanguineous unions result in an increased 

rate of genetic defects in their offsprings [21, 22], including diabetes mellitus, cancers such as 

that of the cervix and the brain, and coronary artery disease [7, 10, 23, 24].  Consanguinity has 

even been considered to contribute to an increase in incidents of hypertension [25, 26].  These 

negative health effects of consanguinity are due to single or multiple recessive genes expressed 
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in the offspring [2]. Therefore, medically it is suggested that consanguineous marriages should 

be discouraged to avoid social damages.  

The degree of relationship involved in consanguineous marriages affects the rate of birth 

defects proportionally [13]. Three relationship degrees are considered to have deleterious 

effects on human health that include first, second and third degree genetic associations, as 

shown in Figure 1 [27]. The first degree includes a person’s parents and children.  Siblings, 

grandparents, and grandchildren come under second degree of genetic relatedness, while 

aunts/uncles, nephews/nieces, great grandparents and great grandchildren come under the third 

degree (Figure 1). First-cousin marriages constitutes higher rate of consanguineous union and 

share twice the consanguinity (four times the degree of consanguinity of second cousins) as 

any other degree relationship, and are used as prototypical examples in studies of 

consanguinity [13].  First cousins share 50% genome, similar to their parents. That is why first 

cousin marriages are more discouraged than second or third degree unions. [28].  

Due to population interactions complexities regarding consanguinity and large number of 

components involved, it is difficult to effectively study the behavior of consanguineous 

population along with congenital disorders. Many statistical studies have been conducted to 

study these interactions, but these studies have provided limited information regarding the 

resultant effects of consanguinity on a given population [14, 29, 30].  A few studies regarding 

simulation of consanguinity networks exist [31, 32], but they have treated consanguinity as a 

social problem rather than a biological one.  Since modeling and computer simulation 

techniques have previously proven useful for developing an understanding of the dynamics of 

complex biological systems [33, 34]; therefore this approach has been used to examine 

consanguinity in this study. 
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 2.1 Modeling and Simulation 

Modeling is the process of producing models for a simulation study [35].  The main focus 

of modeling is on the input and output signal relation instead of detailed dynamics within the 

system [36].  Simulation is a tool which is used to simulate an abstract model or generate 

behavior of a particular system.  Simulations are implemented with the help of a simulator 

software.  If a model is a set of mathematical instructions, then simulator is a software which is 

used to execute these instructions and generate the behavior of the system of interest (Figure 2) 

[37].  The framework of modeling and simulation consists of four main entities [37]: 

• Experimental frame  

• Real/virtual source system to be simulated 

• The model  

• The simulator 

The experimental frame specifies the environment under which the system is tested, 

while the source system is the environment (either real or virtual) to be modeled from which 

the data is gathered through observation..  The model is a mathematical representation of a 

system or structure to represent the real world behavior. The simulator is that computational 

system/software which obeys instructions of the model and generates behavior shown in Figure 

2 [37].  

The modeling and simulation entities become significant only when they are properly 

related to each other. “Modeling Relation” shows the relationship between the behavior 

generated by the model, and how much it agrees with observed system behavior. On the other 
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hand, “Simulation Relation” determines whether the simulator executes the model behavior 

correctly or not [37]. The framework of modeling includes many system specification 

formalisms, such as discrete time system specification (DTSS), differential equation system 

specification (DSS), and discrete event system specification (DEVS).  These formalisms help 

to model systems in the most appropriate and effective manner during early development at the 

requirements and specification levels [37]. 

 Modeling and computer simulation techniques have previously proven useful for 

understanding the dynamics of complex systems such as in ad-hoc and P2P networks [38], 

wireless sensor networks [39], detection of emergent behavior [40], breast cancer research [41, 

42] and viral infections [43], etc.  Recently, DEVS formalism has been used as a specification 

framework to model natural or biological systems effectively, such as interactions in nerve 

cells and geographic distribution of adult Mediterranean fruit fly [17, 44].  Therefore, in this 

study, we used the DEVS formalism to model potential effects of consanguinity in causing 

congenital defects.  

 

2.2 Discrete Event System Specification 

DEVS is a formal mathematical framework which is used to design models for discrete 

event simulation [37].  DEVS models are usually described as either atomic or coupled models 

which are defined as tuples: 

(X, Y, S, δext, δint, λ, ta)             [Atomic model] 

(X, Y, D, {Mi}, {Ii}, {Zi, j}, select)              [Coupled model] 

Behavior specification of a component within a system is defined by the Atomic DEVS 

model. Component’s behavior specification is based on the time advance function ta(s), which 
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keeps on changing after certain time period; therefore, it changes the initial state, s, of the 

component’s behavior. During this constant time period, if any external event occurs and is 

received by the component as input, then a function, termed as “external transition”, is 

implemented for the specific identification of the model’s new transitioned state. Alternatively, 

if no external input enters in the component state and ta(s) defined time also passes by, then 

another function namely λ is called out which displays the output.  After the display of output 

of the current state, the transition function is again executed to find the possible next 

component state of the generated model [37]. 

DEVS’s coupled model is based on several small components (models), termed Mi. 

These small models are connected to each other in a way that the output of one model acts as 

an input of some other model module {Ii}. A defined function, Zij, reads and understand the 

output from a component i and then makes it compatible for another component j as an input. 

This is termed as the coupling mechanism of the DEVS coupled model. The transition 

functions of the embedded models actively participate in changing the state of events; therefore 

a tiebreaking selector is used which helps in maintaining the order so that only one transition 

function remains on, and when the coupling is over, then the other transition function is 

prompted. Thus,  a general statement can be made that under the coupled DEVS model, several 

atomic DEVS models can be embedded [37]. 

The major strategy behind DEVS is that the model and simulator work separately and the 

simulator does not depend on the model in a sense that it can run simulations regardless of 

what DEVS model represents [45]. DEVS formalisms are developed to improve system 

reliability, design time and comprehensibility [46]. Therefore, DEVS formalism provides a 

good framework to model consanguinity as a risk factor for many congenital disorders because 



8 

 

it supports hierarchical and modular coupling construction for discrete events [47]. The impact 

of consanguinity as a genetic risk factor has not previously been modeled using formal 

methods. Therefore, our aim was to provide a DEVS framework to model consanguinity 

followed by conversion of DEVS model in simulation using Simio software and its validation. 

 

2.3 DEVS in Relation to Other Approaches: 

For the specification of model frameworks, various formalisms have been in use for 

decades. For example, Petri Nets [48], Discrete Time Specification [37], Finite State Automata 

[49] and Queuing Networks [50] have been widely used to specify system properties.  In case 

of Discrete Time Specification (DTSS) formalism, inconsistency in the system state 

specifications is the major drawback because it treats time variable as a constant number, 

whereas in contrast, a real world system continuously changes with time.  DEVS formal model 

specification framework, which uses mathematical notations to specify a system’s behavioral 

characteristics, overcomes this problem by mainly focusing on the time ‘’t” variable, whose 

value continuously changes like other variables in a system. It does so by separating the system 

states and constant states by using transition functions which calculate constant states from 

current system states. DEVS maintains separation between the simulators and models to handle 

system state and constant state complexity.  

For the modeling of complex biological systems, various statistical and computational 

methods are in use, but the development of complex models that can be used to simulate data is 

not always intuitive. There are certain reasons why we used DEVS approach to model 

consanguinity instead of using statistical and other computational approaches which are 

elaborated below: 

. 
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2.3.1 DEVS vs. Statistical Distributions 

We used DEVS formalism to model consanguinity system. It is well known that 

statistical distributions cannot handle heterogeneities or micro behaviors of a system whose 

behavior and structure is not completely understood [51]. DEVS applies mathematical 

modeling for handling heterogeneous data, as demonstrated by Zeigler et al. (2000). They 

reasoned that DEVS data is represented in the form of a model in which one can observe the 

system state at any point and at any given time [37].  This is not the case with statistical tests 

since the intermediate values obtained through them do not provide any significant information 

as they are based on certain formulas [52].  Hence, whole test statistical distributions provide 

results in the form of a concrete estimated value or percentage, and although they have proved 

effective, they are too slow for real-time use.  Using DEVS, ongoing experiments can be 

viewed theoretically at any step of the integrated subsystems [53], while in case of statistical 

tests, it is difficult to estimate the value of states that are continuously changing with respect to 

time [54].  Beside these reasons, many algebraic notations do not include the time element that 

DEVS inherits from its system theoretic origins.  

 

2.3.2. DEVS vs. Genetic Algorithms 

Genetic Algorithms (GA) are based on the theory of evolution [55]. The basis of this 

approach is that evolution always leads towards the survival of the fittest, but in case of 

consanguinity, it does not always go towards fitness and in fact has many harmful effects. 

Thus, even though in the case of malaria, it has been shown that consanguinity provides 

benefits by congregating malarial resistant genes in offspring [13], a slew of other studies have 

shown the harmful effects of consanguinity in the form of  inheritance of abnormalities which 
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pass from generation to generation [7, 10].  Additionally, genetic algorithms have difficulty in 

handling two different state spaces at the same time, whereas DEVS framework can handle 

many scenarios of a system simultaneously by formally representing their structures [56].  

It is also unreasonable to use genetic algorithms to study consanguinity because GA 

works by its own internal rules which cannot predict system behavior without testing them first 

on a simulation model [57].  On the other hand, DEVS framework can easily predict system 

behavior by changing its theoretical rules according to the particular system [53].   

Furthermore, GA uses many methods for selecting fittest populations [58], but in 

consanguinity the focus is not on the selection of the best population; rather, the aim is to 

determine that certain threshold of consanguinity which could be hazardous for a population 

depending upon the phenotype being studied. 

 

3.  Development of the DEVS Model of Consanguinity 

 

This section describes the DEVS model of consanguinity as a risk factor.  As mentioned 

earlier, framework development of consanguinity system identifies key elements or entities and 

their relationships. Therefore, first we specified the basic entities of modeling and simulation 

of consanguinity, i.e., source/real system along with the experimental frame, model and 

simulator (Figures 2 and 3). The experimental frame includes region, religion, arranged 

marriages or self commitment, % consanguinity, allelic frequency, consanguinity type (i.e., 1
st
 

or 2
nd

 degree), and co-efficient of inbreeding. With consanguinity as the source system, the 

DEVS model and Simio simulator are shown in Figure 3.  
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After specifying the entities, the DEVS formalism of consanguinity was built which is 

described below: 

M = (X, S, Y, δδδδint, δδδδext, λλλλ, ta) where: 

M is model representing the overall system 

X: set of input values, i.e., region, religion, arrange/self commitment, % consanguinity, allelic 

frequency, consanguinity type, and co-efficient of inbreeding 

S: set of states, i.e., Birth event � Marriage event� Birth event � Marriage event.  Between 

these two events, the probability of congenital disorders and deaths are also included 

Y: set of output values, i.e., new populations with probability of congenital disorders due to 

consanguineous and non-consanguineous marriages 

δδδδint: Internal transition function, i.e., if birth event occurs in consanguineous union, then 

there is a probability of congenital disorder risk and death events 

δδδδext: External transition function, i.e., if male and female populations are available, then 

consanguineous marriage event will occur 

λλλλ: Output Function, i.e., S�Y 

ta: Time advance function, i.e., new births, deaths and marriages per year 

The model begins with a population growth submodel in order to understand how 

marriage and population growth events occurr, and then focuses on DEVS-based design of 

consanguinity to demonstrate its complexity.  In the population growth model (Figure 4),  

initially two populations are used, i.e., male (MP) and female (FP) rather than the whole 

population to simplify model development and analysis. After separating both populations, 

marriage events occur followed by population growth.  Under population growth, another 

source of offspring is added to generate children from resulting marriages randomly. This leads 
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to a new population consisting of the number of total marriages and offspring. To simplify its 

presentation, we focused on the handling of interactions between male and female populations.  

The population growth submodel design helped us to expand the model of consanguinity 

as a risk factor. Next, DEVS-based consanguinity formal model was developed with an 

embedded population growth submodel (Figure 5). In DEVS-based consanguinity formal 

model, initially the whole population (WP) is used and then separated into two groups, i.e., 

male (MP) and female (FP). This allows us to obtain male and female entities equally for 

marriage events. After combining both male and female populations, the group is split into 

two, i.e., consanguineous and non-consanguineous marriages. Consanguineous and non-

consanguineous marriages event now occur separately followed by population growth (births). 

At the end, we obtain a new population with the probability of consanguineous and non-

consanguineous marriage and their rate of offspring growth. 

Next, we chose a simulation approach to implement the DEVS-based consanguinity 

model to maximize its utility. 

4. Simulation 

 

In the previous sections, we presented basic entities and framework of consanguinity 

using DEVS formalism. This section will further describe the implementation of consanguinity 

using the simulation software Simio. Simio makes simulation easier for decision making and 

enables users to solve more problems, more easily than ever before.  It is based on the model 

object-oriented framework and facilitates building of 3D models [59].  In Simio, the basic 

concept of object-oriented framework is that classes define the behavior of objects [18]. Those 

classes, when placed together in a model, result in the emergence of system behavior from 
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previously defined object interactions. Objects can be user-defined and can easily be added and 

extended in Simio. The basic object types in Simio are [59]: 

• Fixed � a fixed location 

• Source � generates entity objects 

• Server � models a capacitated process 

• Sink � destroys entities that have finished processing in the model 

• Link � paths between objects 

• Node� intersection between links 

• Agent � unconstrained movement through free-space 

• Entity � an agent that moves across links and enters objects 

• Transporter � an entity that carries other entities  

• Combiner � attaches the batched members to a parent entity 

• Separator � separates batched members to a parent entity or makes copies of entity 

objects 

 

4.1 Simulation Model of Population Growth 

Model development in Simio begins with a population growth submodel, based on the 

flow diagram depicted in Figure 4.  Many objects are used in this simulation, such as model 

entities (here entities mean individuals or parents), source, server, combiner, paths and sink 

which destroy entities.  Two source objects are used to create the male and female populations 

to facilitate the correct manner of handling male and female entities. Then both of the source 

populations are combined in a 'Combiner' object that takes one of each entity, combines them 

(marriage), and sends them to Server1 named “Population Growth”.  Connecting the female-
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population source to the top entry point of the Combiner and connecting the male-population 

source to the bottom entry point of the combiner takes a parent and member.  In this case, the 

default batch quantity of '1' is used since we require only one male and one female entity to 

attach.  

   To execute “Population Growth” event, a server is used within the “Add-On Process 

Triggers” section of “Properties”, which adds a new logic named a 'Processed'. This directs the 

user to the “Processes” window with a new process called “Server1_Processed”. Within this 

process, we can use a 'Create' step to create new entities (offspring) based on a distribution to 

determine the number of objects to create. When new entities are created, they are sent from 

the “Created Exit” of the “Create Step” and a “Transfer Step” step (Figure 6) can be used to 

transfer them from “free space” (where they are created) to a particular node - in this case, they 

can be transferred either to the Output@Server1, where they can exit with the parents, or they 

can be transferred into a “sink” where they can be counted.  

In the Simio simulation, for generating offsprings, a “children” entity object (similar to 

MP and FP) are added that are animated in such a manner that one can see the difference 

between children and parents.  This is not required, but may be desirable at times.  To create 

offsprings, within the “Processes” window, use the “Create Step” to change the “Object 

Instance Name” to “Children” and “Number of Objects” to “Random.Discrete” distribution 

based on information provided regarding how many children per couple to create.  For 

example, Figure 7 shows that 10% of the population has 0 children, 20% has 1 child, 30% has 2 

children, 30% has 3 children, 8% has 4 children and 2% have 5. 

 To graphically depict children leaving Server1 (population growth) with the parent 

(instead of them all leaving simultaneously on top of each other), one can change the “Path 
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Allow Passing” property to “False” so they are shown in a line (Figure 8).   Data collected 

from simulations can provide information regarding the number of off springs calculated. The 

parents are never split, as a separator object is not used – but stay together with the animated 

parent entity.  

The Population growth model generates male and female entities randomly and then 

these entities enter into a combiner object that triggers marriage events.  The marriage events 

are followed by population growth (in which a random child population is created) and death 

event.  After that this number is added into the new population (Figure 9).  

 

4.2 Simulation Model of Consanguinity 

This population growth submodel is further used in an expanded consanguinity model by 

splitting it into two submodels:  consanguineous marriages and non-consanguineous marriages 

(Figure 10). In the same way as in the population growth model, the male (MP) and female 

(FP) population is used followed by the separation of this population into two groups based on 

consanguinity. The first group has male (MP_C) and female (FP_C) populations for 

consanguineous marriages and the second group holds male (MP_NC) and female (FP_NC) 

population for non-consanguineous marriages. Path weights are used to distribute these 

population entities accordingly. Then a combiner is used to tie male and female entities 

together in marriage. After reaching the queue of server named “Population Growth”, birth 

events occur and generate offsprings randomly. The same process takes place with non-

consanguineous marriages with resulting birth events.  The population is continuously updated 

based on marriages and generated offsprings (Figure 10). 
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  To differentiate offsprings which are generated randomly, an “Animation Property” is 

used which changes the appearance of the child entity.  This dynamic property can be applied 

by using the “Additional Symbol” icon which generates multiple symbols of single entity until 

the desired number of symbols has been achieved. Two symbols of a single entity to represent 

male and female children were created in both population growth and consanguinity models 

(Figure 11). After creating multiple desired symbols, the “Model Entity Properties>Animation 

>Random Symbol Property” was set to True, to allow each new object to be randomly assigned 

a symbol from the “Additional Symbol List”. 

 

5. Results and Discussion 

The consanguinity model thus developed was used to simulate real data for the validity of 

the model.  Simulations were run at least 50 times and the results were exported into an Excel 

sheet with comprehensive data and statistics regarding the model behavior.  Here, we will 

discuss results with the help of tables generated through Simio pivot grid or reports.  

The first step towards testing our model was to validate the population growth model.  This 

was done using data for Saudi Arabia available in the World Factbook [60].  Data from Saudi 

Arabia was chosen for the validation purposes since it is a society with high consanguinity 

rates for which a lot of data was available that we could use for the validation purposes. 

 

5.1 Population Growth Model Validation 

We validated our Population Growth Model by plotting the real data of Saudi population  

from the years 2005-2009 [60] side by side with results from simulation of the same data using 

our Population Growth Model .  As can be seen, the predicted population came within 3% of the 
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actual population (Table 1 and Figure 12), precisely within the margin of error for actual Saudi 

Arabia population sampling that was ± 3% [60].  Furthermore, plotting of the data with time 

showed that the growth curves of the predicted and expected populations were the same, 

revealing an excellent correlation of the expected growth rate with the actual one (Figure 12).   

Similarly, Simio was used to predict the number of male and female members of the Saudi 

population generated over the period from 2006-2009 using total population data, death rate, and 

male:female sex ratio from the year 2005 from the World Factbook [60].  As can be seen 

(Figures 13  and 14), the actual and predicted gender-specific ratio observed for the year 2009 

was similar in which the male population remained higher than the female population, a trend 

observed worldwide [60].  However, in terms of absolute numbers, there was a 14% difference 

between the predicted and actual gender-specific population numbers for the year 2009 [61], 

which probably reflects inaccuracies of reporting the actual numbers in the 2009 census, and/or 

use of sex ratio figures from different studies (World Factbook data [60] verses World 

Population Prospects [61]).  

Thus, test of our Population Growth Model revealed that overall its simulation reflected real 

world data trends, and can be used for further simulation of consanguinity in a population. 

 

5.2 Consanguinity Model Validation 

To validate the consanguinity model, we needed specific data that was not available in 

the literature.  Therefore, we used data available from different studies to determine whether 

our model could give us results as close to real life as possible.  Towards this end, gender and 

death rate data for Saudi Arabia (2006) was used from the World Factbook [60].  The sex 

distribution of Saudi Arabia was 1.33 male(s)/female between the ages of 15-64 years [60].  
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We selected this defined age range since it covers the reproductive time period of individuals 

which directly relates to consanguineous or non-consanguineous marriages.  Our consanguinity 

model separates the male and female population into two groups (Figure 10). The first group 

has male (MP_C) and female (FP_C) population for consanguineous marriages. Here, the 

distribution rate for consanguineous union was taken as 30% based on average rates of 

marriages between first cousins among Saudi populations [62]. Conversely, for non-

consanguineous marriages, the paths weights were assigned as 70 (Figure 10). To correctly 

reflect the growth rate, a death rate of 2.58/1,000 for the year 2006 was taken from the World 

Factbook for Saudi Arabia and assigned to accurately predict the population growth [60].  

After assigning these parameters, comprehensive data was generated by our consanguinity 

model, shown in Table 2.  

Table 2 demonstrates the total number of consanguineous and non-consanguineous 

marriages along with the population growth as a result of these marriages for the year 2006. 

Since the actual data of consanguineous and non-consanguineous population does not exist, in 

order to validate our model, we predicted the total population of Saudi Arabia for the year 2006 

by adding both consanguineous and non-consanguineous populations obtained through the 

simulation analysis and compared it to the total population of Saudia Arabia estimated actually 

for the year 2006 (Table 2).  The two numbers came within 3.2%--the error rate of the data 

collection [60], revealing once again an excellent correlation of the predicted results with that 

of the actual data, though in an indirect manner. 

Conclusions and Future Work: 

In this study, we have developed a DEVS model of population growth and used it to 

study the in silico emergence of consanguinity in the offsprings.  The main idea of this study 
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was to take the first steps towards answering questions such as what are the rates of 

consanguinity which can impact the emergence of birth defects in a population.  It is important 

to model consanguinity in order to acquire a complete picture of congenital defect trends.  Our 

contribution is a DEVS-based model of consanguinity which can predict the level of 

consanguinity in a population followed by simulation using the Simio simulation software.  

Validation of our model using real-world data shows that DEVS can be used effectively to 

model biological problems.  In future, we plan on applying the DEVS formalism to specific 

congenital disorders due to consanguinity to evaluate the probability of congenital defects due 

to consanguineous and non-consanguineous marriages. 
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Table 1: Population Growth Statistics via Simio Simulations. The year column shows the 

period over which female and male population data was generated along with the growth of 

the total population.  

 

 

Year 

Actual Population 

Growth of Saudi 

Arabia* 

Predicted Population Growth 

Rate of Saudi Arabia 

% Difference Between 

Actual and Predicted 

Growth Rates 

2005 26417599 25655000 2.89 

2006 27019731 26231000 2.92 

2007 27601038 26790600 2.94 

2008 28146656 27411500 2.61 

2009 28686633 27980600 2.46 

   *Actual data available in CIA World Factbook [60]. 
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Table 2:  Statistics on total number of consanguinity model entities created using Simio 

simulation and comparison with real data. 

*Actual data available in CIA World Factbook [60]. 

 

Objects Name Actual Statistics 

of Saudi Arabia 

from year 2006* 

Predicted Statistics 

from Consanguinity 

Model 

% Difference  

Consanguineous marriage(s) - 3154352  

Non-consanguineous marriage(s) - 9898900  

Consanguineous population growth - 9628005  

Non-consanguineous population growth - 18290500  

Total population growth 27019731 27918505 3.22 
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Figure Captions: 

Figure 1: Degree relationships between family members.  Each circle represents the degree 

of consanguinity (genetic relatedness) with the person in the middle of the figure. (Figure 

modified from [27]). 

Figure 2: The basic entities in modeling and simulation and their relationship to each 

other. Experimental frame specifies the conditions or environment in which system is 

experimented with, source system is the real or virtual system which is to be modeled, model 

is a mathematical representation of any system or structure, data is usually gathered by 

observing it, and simulator is a software which follows model instructions and generate 

particular behavior of a real system. 

Figure 3: Basic entities of modeling and simulation of consanguinity. This figure shows 

the main entities of consanguinity model which specifies experimental frame (population, 

allelic frequency, region, religion, cousin and consanguinity type, etc.), source system 

(consanguinity), model (DEVS-based) and simulator (Simio simulation software) for DEVS-

based model of consanguinity.  

Figure 4: Flow diagram of population growth. This flow diagram shows population growth 

model which initialized with two populations, i.e., male (MP) and female (FP). After 

separating both populations, marriage events occur followed by population growth.  Under 

population growth, another source of offspring (child) is added to generate children from 

resulting marriages randomly. This leads to a new population consisting of the number of total 

marriages and offspring. 

Figure 5: DEVS-based consanguinity model.  Flow diagram of DEVS-based consanguinity 

model. MP, male population; FP, female population; Children_C, children resulting from 
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consanguineous union; Children_NC, children resulting from non-consanguineous union.  

This model initiates with male and female populations. After combining these two 

populations, the group is split into:  consanguineous and non-consanguineous marriages. 

Consanguineous and non-consanguineous marriages event now occur separately followed by 

population growth (births) which include offspring source to generate children randomly.  At 

the end, a new population with the probability of consanguineous and non-consanguineous 

populations with their rate of offspring growths are created. 

Figure 6: Add-On Process used in the Population Growth Model to create offsprings 

randomly. 

Figure 7: Snapshot of “Create Step” for random offspring generation.  This figure shows 

the properties for creating offspring randomly. To create offsprings, within the “Processes” 

window, use the “Create Step” to change the “Object Instance Name” to “Child” and 

“Number of Objects” to “Random.Discrete” distribution based on information provided 

regarding how many children per couple to create.  For example, this figure shows that 10% 

of the population has 0 children, 20% has 1 child, 30% has 2 children, 30% has 3 children, 8% 

has 4 children and 2% have 5.  

Figure 8: Parent and offspring move together into a new population object as discrete 

entities in a line. This figure shows the children leaving the Server1 (population growth) with 

the parent graphically and then counted in sink object (new population). 

Figure 9:  Two and 3D view of the Simio complete population growth submodel. DEVS-

based population growth submodel in 3D, using Simio simulation software. 

Figure 10: Model of consanguinity. MP_C, male population for consanguineous marriages; 

FP_C, female population for consanguineous marriages; Children_C, children resulted from 

consanguineous  union; Marriage_C, consanguineous union; PopulationG_C, 
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consanguineous population growth;  NewPopulation_C, new consanguineous population; 

MP_NC, male population for non-consanguineous  marriages; FP_NC, female 

population for non-consanguineous marriages; Children_NC, children resulted  from non-

consanguineous union; Marriage_NC, non-consanguineous union; PopulationG_C, 

nonconsanguineous population growth; NewPopulation_C, new non-consanguineous 

population.  

Figure 11: Adding additional symbols in Consanguinity Model. This property helps to 

create multiple desired symbols. 

Figure 12: Population Growth Model validation with Saudi population data. Graph 

comparing the original Saudi population growth data from the years 2005-2009 with the 

simulation data generated via Simio in SPSS.   

Figure 13: Male and female statistics from 2005-2009, generated using Simio simulation 

software generated using SPSS. 

Figure 14: Gender-specific distribution of the Saudi population in 2009 predicted by 

means of Simio using population growth data from 2006 generated using SPSS. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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44 

 

 

 

 

 

 

Figure 13. 
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