Kenneth J. Turner. Formalising Web Services. In Fern Wang, editor,

Proc. Formal Techniques for Networked and Distributed Systems (FORTE XVIII),
Lecture Notes in Computer Science 3731, pages 473-488,

Copyright Sporinger, Berlin, October 2005.

Formalising Web Services
Kenneth J. Turner

Computing Science and Mathematics, University of Stirli@gotland FK9 4LA
Emailkj t @s. stir.ac. uk

Abstract. Despite the popularity of web services, creating them minis
an intricate task. Composite web services are defined ubm@\olving stan-
dard for BPEL (Business Process Execution Logic). It is explained hawe €s
(Chisel Representation Employing Systematic Specifinatias been extended
to meet the challenge of graphically and formally descghireb services. Sam-
ple CREssdescriptions are presented of web services. These are atitaity
translated into bTOS, permitting rigorous analysis and automated validation.

1 Introduction

1.1 Background

Web services have become a popular way of providing accedistiibuted applica-
tions. These may be legacy applications given a web servie@ping, or purpose-
designed applications. This paper describes an unusubtapgn of formal methods
(LoTos) to modern developments in communications systems (wefices).

The interface to a web service is defined irs¥. (Web Services Description Lan-
guage). However this is purely syntactic and does not defiaesemantics of a web
service. Although VBDL can be manually created and edited, this is an intricate and
error-prone task. For this reason, most commercial salatéom to create \WDL auto-
matically from the code of an application.

WsbDL describes aisolated web service. The current thrust in web service research
is on composing them into what are callaghiness process. (Other terms used include
business flow and web service choreography.) Assume thébitbeing web services
exist: airlines take flight bookings, hotels reserve roocas,hire firms book vehicles,
and banks accept electronic payments. A travel agency earbthild a business process
that arranges all these aspects of a trip through a singlesesmfice.

Unfortunately, many competing standards emerged for cempgoveb services.
Harmonisation was achieved with the multi-company spedtifia for BPELAWS (Busi-
ness Process Execution Language for Web Services [1]).id bising standardised as
WS-BPEL (Web Services Business Process Execution Language [RHLBNS is sta-
ble, and has been used for most of the work reported here. ¥mitdnas shortcomings,
so WS-BPEL has also been used for reference. For brevity, this papersréd BPEL
and web services with all the interpretations discussesabo

BPELIs a recent and evolving language, so tool support is stiféltping. It can be
very difficult to understand a complex flow from the XML irPBL. A graphical view
of composed web services is thus very desirablevB (Business Process Modeling
Notation [3]) has been developed to give a high-level gregihiiew of such services.

This paper emphasises tbemposition of web services, not the descriptionied-
lated web services. This is partly because web service creatiooviswell automated,

and partly because many web services already exist. Congposb services, i.e. defin-
ing web-based business processes, has attracted cobsidachustrial interest.

The author has previously develope®&iess (Chisel Representation Employing
Structured Specification) as a general-purpose graphatation for services. feSs
has been used to specify and analyse voice services fromltfiatelligent Network)
[6], Internet Telephony [7], and IVR (Interactive Voice Resise) [8]. Service descrip-
tions in GREssare graphical and accessible to non-specialists. A majeardege of
CREssdescriptions is that they are automatically translated fatmal languages for
analysis, as well as into implementation languages forayepént. REssoffers bene-
fits of comprehensibility, portability, rigorous analysisd automated implementation.

Essentially, @essdescribes the flow of actions in a service. It was therefonarah
to investigate whether @ ssmight be used for describing web service flows. This has
proven to be an appropriate application ¢i€ss CRESSis designed to be extensible,
with plug-in modules for each application domain and eaafetdanguage. Substantial
work has been required because web services are quitectiwinHowever, adding
web services as a newREssdomain has benefited from much of the existingeSs
framework. For example, REss has explicit support for features that allow a base
service to be extended in a modular manner. The existrgSlexical analyser, parser
and code generators have also been reused for web services.

The work described in this paper discusses how composed arglees are rep-
resented using Ressand translated into &tos This automatically creates formal
models of web services, and allows them to be rigorouslyyaedl Since web develop-
ers are unlikely to be familiar with formal methods, the utk oTOSis hidden as much
as possible in the approachrEssdescriptions can be formally validated without see-
ing or understanding the underlyinglros. In additional work not reported here, the
same CRESsdescriptions of web services are automatically translatenBPEL and
WsbpL for implementation and deployment of web services.

1.2 Relationship to Other Work

Web services are well established and are widely supporstezbimmercial tools; it
would not be sensible to try competing with these. Howeverftitus of this paper
is on web service composition. Due to the relative newned3rafL, support is only
now maturing. Major products include IBM’s WebSphere, M&oft's BizTalk Server,
Active EndPoint’'s Active®EL, and Oracle’s BEL Process Manager. None of these
provides a formal basis or rigorous analysis.

BPMN can be viewed as a competitor notation teeSsfor describing web ser-
vices. However, BMN is a very large notation (the standard runs to almost 300g)age
It also has a single purpose: describing business proceé3sem is only a front-end
for creating web services; tool support for creating (sayEBis only now emerging.
In contrast, RESSis a compact and general-purpose notation that has now beesmp
on services from four different domainsr€ssoffers automated translation to formal
languages (e.g.@T0s SDL) as well as to implementations (e.gpB., VoiceXML).
CRrEessalso introduces a feature concept that is lacking in othérseevice approaches.

There has been only limited research on formalising webicesyv[4] is closest to
the present paper. This work supports automated convdssioreen BEL and LoTOS

Cressdiffers in using a more abstract, graphical descriptiort thdranslated into
BPEL and LOTOS there is no interconversion among these representations.

LTSA-WS (Labelled Transition System Analyzer for Web Seed [5]) is also close
in aim to GRESS LTSA-WS allows composed web services to be described ineLB
like manner. Service compositions and workflow descrigtiare automatically trans-
lated into FSP (Finite State Processes) to check safetyiamieks properties.KESS
differs in being a multi-purpose approach that works witmgndifferent kinds of ser-
vices and with many different target languagereEGsmay be used with any analytic
technique using on the formal languages it supports, afthd@wffers its own approach
based on scenario validation.

The CRESsnhotation is described and illustrated elsewhere (e.g.])6EBly a brief
overview is therefore given here; the notation is explaithedugh examples. Section 2
illustrates how ®Essis used to describe business processes. Section 3 oufliees t
translation of @Essservice descriptions intodTos Section 4 shows how the result-
ing specifications can be formally analysed in a variety efuisvays.

2 CREssDescription of Business Processes

A brief introduction is given to the concepts of businesscpases. The REssrepre-
sentation of these is then explained, mainly with referéas®me realistic examples.

2.1 Cressfor Business Processes

A composite web service is termedbasiness process. It exchanges messages with
partner web services, considered as service providers. A web seméy be invoked
synchronously (a request and immediate responsepgmchronously (a request fol-
lowed by a later response). A business process is itself aserlice with respect to
its users. Web services have communicaports whereoperations are invoked. An
unsuccessful operation gives rise téaalt. Compensation applies where work has to
be undone due to a fault (e.g. a partial travel booking ha® tcelmcelled)Correlation

is used to link asynchronous messages to the correct baginesess instance.

A CRrRessdiagram is a directed graph that shows the flow of activitiesBPEL
terms, a @essdiagram defines an executable business process. Numbeted imo
a Cressdiagram correspond toE:L activities. These are inputs and outputs (com-
munications with other web services) or actions (interadahe web service). A BEL
activity is considered to terminate successfully or to (@dile to a fault).

In a CRESsdiagram, arcs (BEL links) join the nodes. Eessnodes and arcs may
have assignments in the fornagriable <— expression. Arcs may be labelled by expres-
sion guards or event guards. Expression guards controhattee choices (switches in
BPEL). Event guards introduce behaviour that is conditional@mes event occurring
(handlers in BEL). The GRESS concept of event encompasseBER events, faults,
requests for compensation and correlation requests.

For business processesrEssis required to offer sophisticated flow of control.
Branchesin a @essdiagram normally reflect alternatives. However businessgsses
need fine-grained control over parallelism. AlthougheR has separate constructs for
sequence, iteration and graph-like flowRESsmodels them all in a uniform way.

2.2 CrEessfor Business Activities

CRESsnames are given in simple or hierarchic form. Operation reima@e the format
partner.port.operation. Fault names have the formfaiult.variable, the fault variable
being optional. Simple variables have the types defined by ¥SVIL Schema Defini-
tion, e.g.Float f, Natural n, String s). CRESScan also define structured types, e.g. the
following that defines twaffer variables:

{Natural referencestring dealerFloat price Natural delivery} offer, offer2

Such a structured type is hamed implicitly after the firstialale: Offer. Structured
variables accesses have the faffer.price.

The subset of EEssactivities appearing in this paper is explained beloweSs
supports more than is described here. As usual, *?’ meansnght *’ means zero or
more times, and|* denotes choice.

Invoke operation output (input faults*)? An asynchronous (one-way) invocation sends
only an output. A synchronous (two-way) invocation exchesgn output and an
input with a partner web service REssrequires potential faults to be declared stat-
ically, though their occurrence is dynamic. The faults thaly arise in a business
process are implied biywoke, Reply andThrow.

Receiveoperationinput Typically this is used at the start of a business process-to re
ceive a request for service. An initiRkeceivecreates a new instance of the process;
a correlation handler is used to match incoming messagégetodrrect instance.
Each suchReceiveis matched by &eply for the same operatioriReceivealso
accepts an asynchronous response to an earlier onéavake.

Reply operation output | fault Typically this is used at the end of a business process to
provide a response. Alternatively, a fault may be signalled

Fork strictness? This is used to introduce parallel paths; further forks bapested to
any depth. Normally, failure to complete parallel paths)gseeted leads to a fault.
This is strict parallelism, and may be indicated explicébstrict (the default). If
this is too stringeniposemay be used instead.

Join condition? EachFork is matched byloin. By default, only one of the parallel
paths leading tdoin must terminate successfully. However, an explicit join-con
dition may be defined over the termination status of paraltélvities. In RESS
the expression uses the node numbers of immediately primites. For exam-
ple, 1 && (2 || 3) means that activity 1 and either activity 2 or 3 must te@aten
successfully. In turn, this means that activities prior,t8 &nd 3 must also succeed.

Throw fault This reports a fault as an event to be caught elsewhere byitdnéndler.

Compensatescope? This is called after a fault to undo previous work. An explic
scope (Ressnode number) indicates which compensation to perform. érath
sence of this, compensation handlers are called in revedse of completion.

The Throw andCompensateactions cause arkEssevent handler to be invoked.
In BPEL these may be defined inside any scope of a processRESE scopes are
implicit. As a consequence, event handlers may only be glmbassociated with an
Invoke. (This is a small restriction that accords with commareR practice anyway.)
The handlers appearing in this paper are as follows:

Catch fault This defines how to handle the specified fault. If a fault has funame
and no value, it is handled by @atch with a matching fault name only. A fault
with name and value is handled byatch with matching fault name and variable
type, otherwise by &atch without a fault name but a matching type of fault value.
(Although not illustrated in this papeZatchAll handles any fault.) A fault handler
applies where it is defined, and to subsidiary activities f&ult occurs, it is con-
sidered by the current scope; if unmatched, it is consideydugher-level scopes
until a matching handler is found. No match for a fault terat@s the application.

Compensation This defines how to undo work due to a fault. A compensatiomltean
applies only where it is defined, and is enabled only oncedhesponding activity
completes successfully. If a compensation handler is eégdcit expects to see the
process state at the time it was enabled. It also cannotladteurrent process state.
In effect, the process must maintain a stack of compensstites.

2.3 A Lender Web Service

A loan service is a frequent example for business procetsesine here is based on
that in the B>EL standard. LoanStar islander that offers a loan to an online customer,
who submits goroposal containing hame, address and loan amount. If the amount is
10000 or more, LoanStar asks its business partner FirstBaterform a full assess-
ment. FirstRate is aapprover that thoroughly evaluates a loan proposal. The loan rate
it determinesis returned by LoanStar to its customer. Ratt may causerafusal fault
(e.g. error message ‘unacceptable’) because a loan caadfgbed.

A full assessment is costly, so a loan for less than 10000akiated more simply.
LoanStar asks its business partner RiskTaker to make aesespessment. RiskTaker is
anassessor that evaluates the risk of a loan. If the risk is low, Loan$féers to lend at
a basic rate of 3.5%. If the risk is not low, LoanStar askstRage for a full assessment.

This example involves multiple web services: two partnebwervices gssessor,
approver), and the business process itsé#hfler). The loan customer acts like a web
service, and may be one. Th&Essdescription of the business process is in figure 1.
The concepts needed to understand this have been explairied &lodes (inputs, out-
puts, actions) in ellipses are linked by arcs (plain or gadjdif theapprover invocation
causes aefusal fault (node 2), this is caught by the associated handlergi3d

The rounded rectangle at the bottom right of figure 1 isra €srule box.Usesde-
clares diagram variables, hgmoposal, risk, rate anderror. Rule boxes have other pur-
poses such as defining macros, event-triggered assignarehiibsidiary diagrams.

An input or output names the partner, port and operation (ender.loan.quote).

In this example, all the web services happen to communidateortioan, but the port
names could vary among services. The lender operatiprots, the approver operation
is approve, and the assessor operatiom@ssess.

2.4 A Car Supplier Web Service

As a further example, DoubleQuote issapplier that offers online customers a good
deal on car orders. A customer providegad containing name, address and car model.

1 Receive
lender.loan.quote

proposal

proposal.amount >= 10000 Else
K

5Invoke
assessor.loan.assess
proposal risk

2 Invoke
approver.loan.approve
proposal rate refusal.error

Else

risk = "low"
/ rate <- 3.5 Uses
{String name String address

Integer amount} proposal

Catch refusal.error

3 Reply 4 Reply teger
lender.loan.quote lender.loan.quote String risk
refusal.error rate Float rate
String error

Fig. 1. Lender Business Process

The request for a quotation is passed to two dealers, eachichwesponds with an
offer giving the dealer reference, name, price and delivery derio

DoubleQuote works with two business partners: BigDealiffgcasdealerl) and
WheelerDealer (acting atealer2). A dealer indicates that it cannot supply the model
by replying with infinite price. (It would alternatively beopsible to signal this by a
fault.) The better offer is selected: the lower price, oréladier delivery date if equal.
This offer is sent to the appropriate dealer as a definiteroifdeecessary, the customer
may later cancel the order corresponding to the selected off

Again, there are multiple web services: the dealdeslérl, dealer2), the business
process itselfgupplier), and possibly the customer. Th&Essdescription ofsupplier
is in figure 2. All partners happen to have the same port nezanelhe supplier opera-
tions areorder andcancel, while the dealer operations agigote, order andcancel.

In figure 2, the supplier obtains dealer quotations in par@fiodes 2 to 5) in or-
der to save time. Both quotes must be obtained (3 && 4 in nod®ibihe quotation
process to terminate successfully. Whichever dealer igfselected leads to a reply
(node 7 or 9). Since a definite order is placed, it may be nacg$s undo this if the
DoubleQuote buyer renegues (or the calling web servicésiailoubleQuote therefore
allows a previous order to be cancelled by the relevant déadeles 10 to 12).

2.5 A Car Broker Web Service

As a final example, CarMen iskaoker that provides an online service to negotiate car
purchases and loans for these. A customer provides@with name, address and car
model. CarMen first uses its business partner DoubleQuetdidgs 2.4) to order the
car on the best terms. If the car is unavailable (the pricefigite), CarMen informs its
customer of refusal by causing a fault with error messageunavailable’. Otherwise,
CarMen asks its business partner LoanStar (section 2.3yaoge a loan for the car
price. If a loan can be provided, the customer receivabhedule containing the dealer

Start

10 Receive
supplier.car.cancel
offer

1 Receive
supplier.car.order
need

offer.dealer = dealer! Else

\

12 Invoke
dealer2.car.cancel
offer

11 Invoke

4 Invoke
dealer2.car.quote
need offer2

3 Invoke
dealer1.car.quote
need offer

dealer1.car.cancel
offer

(offer.price < offer2.price) Il
((offer.price = offer2.price) && Else
(offer.delivery < offer2.delivery))

8 Invoke
dealer2.car.order
offer2

6 Invoke
dealer1.car.order
offer

Uses
{String name String address String model} need
{Natural reference String dealer Float price
Natural delivery} offer, offer2

9 Reply
supplier.car.order
offer2

7 Reply
supplier.car.order
offer

Fig. 2. Car Supplier Business Process

reference, name, price, delivery period and loan rate. dba iis refused (e.g. because
the customer financial record is bad), a loan refusal fadltogcur. Since the car has
already been ordered, compensation requires the ordercarmelled. The refusal is
then returned to the customer.

The GrREssdescription of this business process is in figure 3. This tilmeUses
clause also references the subsidiary serviemer andsupplier. If the lender invoca-
tion in node 3 causesrafusal fault, it is intercepted by the global fault handler (nodes 7
8). This calls the compensation handler in node 6 and retmfult to the customer.

The situation with web services is now very complex. Bheker (figure 3) invokes
the supplier to order the car (figure 2) and thender to arrange a loan (figure 1). In
turn, each of these invokes two further web services. A twitaleven web services is
therefore involved. The beauty of web services is that thaliinvisible to CarMen'’s
customer, who sees a single web service for ordering anddimguthe purchase of a
car. In fact, the internal details of a business processdeationally hidden since this
is confidential. This also allows businesses to change ithteimal procedures, e.g. the
supplier may change dealers or may use more than two dealers.

Start

AN
Catch refusal.error

7 Compensate

8 Reply
broker.carloan.purchase
refusal.error

1 Receive
broker.carloan.purchase
need

2 Invoke
supplier.car.order
need offer

offer.price |= Infinity
/ proposal.name <- need.name
/ proposal.address <- need.address Else Compensation
/ proposal.amount <- offer.price / grror <- "car unavailable"

3 Invoke
lender.loan.quote
proposal rate refusal.error

6 Invoke
supplier.car.cancel
offer

5 Reply
broker.carloan.purchase
refusal.error

/ schedule.reference <- offer.reference
/ schedule.dealer <- offer.dealer
/ schedule.price <- offer.price
/ schedule.delivery <- offer.delivery
/ schedule.rate <- rate

Uses
{Natural reference String dealer Float price
Natural delivery Float rate} schedule
/ LENDER SUPPLIER

4 Reply
broker.carloan.purchase
schedule

Fig. 3. Car Broker Business Process

3 Translating Web Services to LOTOS

The general principles of translatingREssdiagrams into lbTos are explained in [6,
8]. The generated code is neatly laid out and well commefrited . CREsSframework

is largely reusable for web services. However, web sertiegs distinct characteristics
that require extension to this approach. The translaticatesyy is illustrated in this
section with extracts from thedTosgenerated by the examples in figures 1, 2 and 3.

3.1 Data Handling

BPEL simple types are translated into a limited range offbstypes. BEL boolean
correspondsto TosBool, BPEL natural to LoTOSNat, and variations on BEL string

to LoTos Text. Other numeric types in BeL are mapped to &Tos type Number.
Numbers are problematic to handle imntossince floating point numbers are required.
BpPEL 1.1 allows floating point variables, but fortunately reggionly simple integer
arithmetic. Text strings are also awkward imtos since there is no character type.
LoTtoshas no lexical shorthands for numbers or strings, so an yghaxg is required;
their conventional form is shown in the code extracts thédfo

Expressions are translated into their obvioasrbsequivalents. BEL uses XRTH
as its expression language, and so has access to a wide fdngetmns. The lOTOS
framework has support for those required byeR 1.1, i.e. a subset of the arithmetic,
logical and string functions in X&H 1.0. Expression guards becometosguarded
choices. Assignments are turned intotosLet statements.

BPEL requires use of structured variables. Each structured is/@@itomatically
translated into a bTostype with fields as operations. For examgeposal in figure 1
generates the tygeroposal, with field operations such agtName andsetName.

3.2 Basic Behaviour

Outputs Reply, Invoke) and inputs Receive Invoke) correspond to bTos events.
An activity sequence in a REssdiagram becomes a sequence inTlos However,
parts of a @essdiagram often have to be translated as separateols processes.
This happens, for example, when part of a diagram is reachelifferent paths or is
invoked as an event handler. BL activity results in successful termination or failure.
LoTosbehaviours therefore exit with stafeue or False. For simple behaviours, this
is the Sates result of a process. It will be seen later that states arergbsed when
dealing with compensation handling or with concurrency.

All the aspects considered so far are illustrated in th@valhg code for nodes 1, 2
and 5 in figure 1:

ProcessLENDER_1 [lender,approver,assessor] (* LENDER from 1 %)
(error:Text,proposal:Proposal,rate:Number,risk: Te®xit (States).=
lender !loan !quote ?proposal:Proposal; (* LENDER recédiv@
(
[getAmount(proposal) Ge 10006} (* check proposal.amount= 10000 *)
LENDER 2 [lender,approver,assessor] (* LENDER invoke 2 (again) *)

(error,proposal,rate,risk)

[Not(getAmount(proposal) Ge 10006}% (* Else after proposal.amount= 10000 *)

assessor !lloan lassess !proposal; (* LENDER invoke 5 redlies
assessor lloan lassess ?risk:Text; (* LENDER invoke 5 nespd)
(
[risk Eq”low”] > (* check risk ="low” *)
(
Let rate:Number = 3.%n (* update local *)
LENDER_4 [lender,approver,assessor] (* LENDER reply 4 (again) *)
(error,proposal,rate,risk)
)
I
[Not(risk Eq”low”)] > (* Else after risk ='low’ *)
LENDER_2 [lender,approver,assessor] (* LENDER output 2 (again) *)
(error,proposal,rate,risk)
)

)
EndProc (*end LENDER 1 *)

3.3 Event Handling

For each web service, therREsstranslator statically discovers where event handlers
are defined and the scopes where these apply (global, ori@esbwith aninvoke).

An event dispatcher process is then generated with referenthese handlers accord-
ing to their scopes. If a fault handler does not exist for theent scope, the global
handler (if any) is tried. Faults have to be matched agaiastlers in a particular or-
der: Catch with a matching fault nameCatch with a matching fault name and type,
Catch with a matching fault typeCatchAll. A fault means unsuccessful termination,
so event handlers always exit withal se status.

A Compensateaction, aThrow action or a fault invokes the event dispatcher with
information about the scope, fault name and fault value.type fault handling rules of
BPEL require fault values to be coerced into a singerbstype Value. This is needed
so that the kind of value can be matched aga@esich. For example, a fault handler
expecting a string must check if the value is indeed a sttamgther handler for the
same fault name might deal with floating point fault values.

As an examplelnvoke in node 2 of figure 1 may generateefusal fault. This calls
the LENDER_EVENT dispatcher for scope 0 associated with node 2; there is st o
event scope in this example. TMatch operation compares the given fault name and
value type with those in the evemefusal andText in this case). When node 3 is called,
the fault value érror) is set to a string by operatiofext.

ProcessLENDER 2 [lender,approver,assessor] (* LENDER from 2 *)
(error:Text,proposal:Proposal,rate:Number,risk: Te®xit (States).=
approver lloan !approve !proposal; (* LENDER invoke 2 resf.f§
(
approver lloan lapprove !refusal ?error:Text; (* LENDERake 2 fault *)
LENDER_EVENT [lender,approver,assessor] (* call event dispatthe

(error,proposal,rate,risk©f Nat,refusal,Value(error))

approver !loan !lapprove ?rate:Number; (* LENDER invoke 2pense *)
LENDER_4 [lender,approver,assessor] (* LENDER reply 4 (again) *)
(error,proposal,rate,risk)
)
EndProc (*end LENDER 2 *)
ProcessLENDER_EVENT [lender,approver,assessor] (* event dispatcher *)

(error:Text,proposal:Proposal,rate:Number,risk: Tegbpe:Nat,event:Event,value:Value) :
Exit (States).=

[scope Eq 0> (* scope 0?%)
(
[Match(event,kind,refusal, TextKind)> (* match for’refusal.errdt? *)
LENDER_3 [lender,approver,assessor] (* call event handler *)

(Text(value),proposal,rate,risk)

)
EndProc (* end LENDER EVENT ¥)

Compensation handling is much more complex to translate fdnat handling. A
compensation handler becomes available only when its @tedscope has terminated
successfully. The state of the process must also be storedéoby the compensation

handler in case it is called later. When compensation is @ LeTOS processes must
therefore carry atates parameter as the history of compensation states.

As each activity with compensation completes, it prefixesdhrrent state (i.e. the
process parameters) to the previous state list. In thisawstack of compensation states
is maintained. The following extract is from nodes 1 and 2@iiffe 3. The first param-
eter of operatiorate is a True status (all that is used in simple processes), while the
second parameter is the compensation scope (1 in this casé@the global scope).

ProcessBROKER_1 [broker,supplier,lender] (* BROKER from start *)
(error:Text,need:Need,offer:Offer,proposal:Propmatd:Number,
schedule:Schedule,states: Statdsjit (States).=

broker !carloan !purchase ?need:Need; (* BROKER receive 1 *
supplier Icar lorder Ineed; (* BROKER invoke 2 request *)
supplier Icar lorder ?offer:Offer; (* BROKER invoke 2 respse *)
(

Let states:States = (* store state *)

State(True,1,error,need,offer,proposal,rate,scleg¢dustatedn ...
)
EndProc (* end BROKER 1 ¥)

A Compensateaction for a given scope invokes the event dispatcher. Hasches
the stored states for a matching compensation state. Itiidtie handler for this state
is called. If not found (or no scope was specifieddmympensate, the default action is
to call all compensation handlers in reverse order of agtaompletion. The net effect
is that compensation undoes previous work. In figure 3, fangle, failure to obtain a
loan causes the car order to be cancelled.

3.4 Concurrency

Parallel execution in BEL (Fork, Join) is very tricky to render in bTOS, despite the
fact that LoTos can readily specify concurrency. This is largely becauseiBhas
global variables that are shared among parallel executdmspwhereas &Tos has
only local state. It is also necessary to deal with the effeétevent handlers during
parallel execution, e.g. a fault may prematurely termiraate path and trigger com-
pensation. By default, BeL allows execution to continue if only one of the preceding
parallel paths terminates successfully. However, anraryitombination of path ter-
mination statuses may be used to determine this.

The CRESstranslation to loTos handles concurrency by collecting an exit state
from each path. The status of each is then evaluated. Wdhrecondition is satisfied,
execution can continue. If the condition is not satisfiedpiaFailure fault is caused.
However if theFork specifiedoose concurrency, the activity followingdoin is simply
considered to have failed. This may allow other parts of tbb gervice to continue.

Concurrency is a second reason for processes to carry th&ir & a parameter.
Each parallel path exits with the current process state.stées from each path are
reconciled, and the current process parameters are cothpuattact, BPEL acknowl-
edges but does not solve the problem that the same variablebemaltered in parallel
path. The @esstoolset performs a data flow analysis of diagrams as theyrans-t
lated. This is essential anyway, for example to decide wdratariables should be read

(*?") orwritten (‘") in L oToSsevents. The same data flow analysis detects variables that
are altered on parallel paths, causing a warning to be ishuieiolg translation.

The following shows the translation of node 5 in figure 2 whibe parallel paths
from nodes 3 and 4 converge. As will be seen, the translatisridibe very complex.

(
(
SUPPLIER 3 [supplier,dealerl,dealer2] (* SUPPLIER output 3 *)
(need,offer,offer2,states)
>> Accept states:Statels (* accept fork states *)
Exit (statesiny States) (* fork exit *)
)
Il
(
SUPPLIER 4 [supplier,dealerl,dealer2] (* SUPPLIER output 4 *)
(need,offer,offer2,states)
>> Accept states:Statels (* accept fork states *)
Exit(Any States,states) (* fork exit *)
)
)
>> AcceptstatesO,statesl:States (* accept join states *)
(
Let state:State = State(AnyBool,need,offer,offdr2) (* get state updates *)
Let state0:State = Head(state$0) (* get SUPPLIER 3 state *)
Let statel:State = Head(state$d) (* get SUPPLIER 4 state *)
Let status0:Bool = getStatus(statedn) (* get SUPPLIER 3 status *)
Let statusl:Bool = getStatus(statei) (* get SUPPLIER 4 status *)
Let state:State = getState(state,state0,stdbel) (* reconcile states *)
Let need:Need = getNeed(stata) (* set need from combined state *)
Let offer:Offer = getOffer(stateln (* set offer from combined state *)
Let offer2:0ffer = getOffer2(statdn (* set offer2 from combined state *)
Let states:States = getStates(Tail(states0), Tail(states1) (* combine states *)
[Not(statusO And status13» (* join failed? *)
SUPPLIER EVENT [supplier,dealerl,dealer?] (* call event dispatctje
(need,offer,offer2,states,AnyNat,JoinFailure, Any)\é&l
I
[statusO And statusi> (* check join condition *)
SUPPLIERS5 [supplier,dealerl,dealer2] (* SUPPLIER from join 5 *)

(need,offer,offer2,states)

3.5 Partner Processes

Partner web services are translated as separate sprocesses, synchronised in paral-
lel with the main LoTosprocess. If the partner is an external web service éprover

or assessor in figure 1), a skeleton specification is generated to masghatt/operation
signature. For example, the default specificatioapgrover is:

ProcessAPPROVER [approver] Exit (States):= (* APPROVER partner *)
approver lloan !approve ?proposal:Proposal; (* APPROV&fFprové input *)

(

approver !loan !approve !AnyNumber; (* APPROVE®&pprové output *)
APPROVER [approver] (* repeat APPROVER *)
I
approver !loan !approve !refusal !AnyText; (* APPROVERfusal fault *)
APPROVER [approver] (* repeat APPROVER *)
)
EndProc (* end APPROVER *)

This is sufficient for basic validation of thender web service, but does not permit
useful analysis. It is therefore possible to give a morasgalspecification of external
partners. If the @esstranslator finds the filecpartner>.lot, it uses this specification
of the partner instead of the default one. In fact these fipattons can be arbitrarily
complex. The four external partners in figures 1 and 2 werergrealistic specifica-
tions. For example, thdealer partners maintain ‘databases’ (lists) of car information,
customer quotations and customer orders.

3.6 Overall Specification Structure

When the broker service in figure 3 is translated, the sesvitégures 1 and 2 are also
incorporated. The result is 330 lines of automatically gatesl LoTOS data types and
310 lines defining lbTos processes. To this must be added the 400 lines of manually
specified partner processes. The generated code is emhiedalsgdecification frame-
work that provides generic support for any web service. Thissists of 590 lines of
LoTos (mostly complex data types). In total, this amounts to jusrd 600 lines of
LoTtos— a manageable specification.

The translation of exactly the same services ktEBmakes an interesting compar-
ison. For this, @Essgenerates 60 source files and 3300 lines of code (mostsLB
WsbDL and Java). So whether the translation toTlos or BPEL is considered, it is
evident that the €essnotation is very compact.

4 Rigorous Analysis of Web Services

4.1 The Value of Formalising Web Services

Developing a formal interpretation of &L has been valuable in its own right. For
example, a number of errors, omissions and ambiguitiesiase found in the standard
(mainly in complex areas such as event handling and datdihghd\ number of these
errors in BPELAwS have already been corrected in W$H. The formalisation of
BPEL also provides a precise interpretation of the standard.

More importantly, the formalisation supports a wide varief analyses. Some of
the investigations have used theAo (and LOLA) tools for LoTOs, while others have
used Q\DP. Both offer distinct capabilities. &LA has the advantage of usingptos
data types as specified; this is beneficial since web seramesupported by some
rather complex types. LA is particularly useful for performing formally-based vali
dation. GA\DP complements this through capabilities such as state spadmisation,
equivalence checking and model checking. The penalty imguShADP is that it places

certain requirements on theolros, mainly on the data types. Some of these issues are
addressed by annotations, but actualised data types hheestxpanded manually, and
some data types need manual realisations.

Rigorous analysis aims to find problems with a web service®ikas a black box.
Formal verification indicates where th@tLosis incorrect; the automatically generated
comments show where theREssdescription needs to be improved. Formal validation,
however, is performed at a higher level, so tteeEGschanges are more obvious.

4.2 Formal Checking

When web services are composed, there is a danger that theyt dgnchronise prop-
erly due to a misunderstanding over the interface.&rm@sterms, this manifests itself
as a deadlock. (A @Tosweb service either perfornisxit or recurses.) This is easily
checked by IoLA using its expansion capabilities. When usinge (or more exactly
WsbL), itis difficult to manually check services for compatibjilsince WsDL interface
descriptions can be written in different ways and yet be isbaist.

The internal design of a web service is proprietary. The awragy, however, wish to
publish an abstraction for public use. There is then a questiwhether the private and
public specifications are consistent with each other. Egglyrthe public specification
must be equivalent (e.g. observationally) to the privategjeation. Web services also
evolve, e.g. the external partners used by a business growgschange. Again, there
is an issue of whether an updated web service is equival@hetéormer one. GDP
supports these kind of analyses with the specificationsrgégfrom web services.

CaDP also allows model checking of web service properties. $aiat liveness
properties can be formulated in ACTL (Action-based Comtioreal Temporal Logic).
For example, théender service must not fault (safety), and every invocation of the
broker service must eventually receive a response (liveness).

4.3 Rigorous Validation

In practice, web services have to be manually debuggedtik@tner program, though
tools like ActiveBPEL provide visual simulation. The &ToSs generated for web ser-
vices can, of course, be manually simulated — but againghisst debugging.

The author has developeddTARD (Multiple-Use Scenario Test and Refusal De-
scription [10]) as a language-independent and tool-indéeet approach for expressing
use case scenarios. These are translated into the chogeadm(loToshere) and au-
tomatically validated against the specification (usirgLk). This is useful for initial
validation of a specification, and also for later ‘regresdiesting’ following a change
in the service description.

There is insufficient space here to explain the $4ARD notation, so reference to
[10] and to the following example must suffice. Briefly, UATARD allows scenarios
with sequences, alternatives, non-determinism and coseey. The following Mus-
TARD scenario checks simultaneous requests taipplier process. The first sequence
requests an Audi A5, and expects to receive a schedule wétledeeference 8, name
WheelerDealer, price 33000, delivery 30 days, loan rat&c3:Bhe second requests a
Ford Mondeo, and allows a specified schedule or an unavaitabtsage in return.

test{SimultaneousPurchases, % simultaneous purchases scenario

succeedé % behaviour must succeed
interleavey % behaviours are interleaved
sequences % need request, schedule response

sendbroker.carloan.purchase,Ne&n Turner,Stirling Scotland Audi A5)),
read(broker.carloan.purchase,Scheduld@eelerDealer,33000,30,3.5))),

sequences % need request, choice response
sendbroker.carloan.purchase,Ne#tifrt JennefLondon EnglandFord Mondeo)),
offers(% choice of schedule or fault

read(broker.carloan.purchase,Schedul&&Deal,20000,10,4.1)),
read(broker.carloan.purchase,refuéady unavailable))))))

Of course, there is then the issue of where such scenarios from. The author
has separately developed PCL (Parameter Constraint Lgad@3) for this kind of
purpose. Trying to generate useful tests from a complexifsgegt@n is generally in-
feasible. PCL is therefore used to annotate a specificatithroanstraints on interesting
input values and on useful orderings over inputs. This mé®tsgeneration practica-
ble for specifications with complex data types, infinite dedés or concurrency — all
characteristic of web service specifications.

4.4 Interaction among Services

Scenario-based validation is also a useful way of checlongterference among sup-
posedly independent services. In telecommunicatiorsjshdalled the feature interac-
tion problem. Interactions may arise for technical reagerts conflicting services are
activated by the same trigger) or for resource reasonstfegervices have a shared re-
source or external partner). One way of interpreting seririteraction is that a service
behaves differently in the presence of some other service.

Web services are formally validated by a range af ¢4ARD scenarios that address
all the critical characteristics of their behaviour. It thgecomes possible to check ser-
vices in isolation as well as in combination. This can effedy and efficiently detect
interactions among services, though failure to detectatéons is not a guarantee that
the services are interaction-free.

Web services are usually viewed as atomic and therefore tiocarporate add-on
features (unlike telecommunications services). Howewvier useful to have a feature
concept for web services.REssreadily supports this in the same way as features can
be added to voice services. A range of generic features keasftiie been defined for
web services; space does not allow them to be presentedaih loiete.

Consider the sample web services discussed earlier. Theglkt use of a customer
name and address. The services could also perform otheataper such as setting up
an account or checking the status of a request. In all casesuld be useful to validate
the name and address provided. In fact this is a fraught enobds all maintainers of
mailing lists are aware.

A name feature has therefore been defined for normalising namésisTautomat-
ically invoked when a web service receives a given requettt awiname. It sets the
name into a normal form (e.g. ‘KJ Turner’). dontact feature has also been defined for
checking whether a name and address are known to be assgo@ihigis automatically
invoked when a given request with name and address is retleywa web service.

When services are validated withUTARD usingcontact alone or withname as
well, it is found that they behave differently (i.e. featiméeraction occurs). The prob-
lem is obvious: if thename feature normalises a name, this may be inconsistent with
the name recorded for an address. Of course, most feateradtibns are obvious with
hindsight. The value of automated analysis is that suchlpnabare detected without
detailed manual investigation when a new feature is added.

5 Conclusions

Business processes can benefit from formal models of theaveur. A graphical de-
scription is much more understandable than the ragBand WsDL. A high degree
of automation is strongly desirable in the creation of welsddl business processes.
CrEssmeets all of these requirements. Compared to commercibd, tGaessdoes
not support the entirety of web services. It handles neastyything used in practice,
a lack of timers being the main omission. HowevereES sconfers distinctive benefits:
applicability to many domains, human-readable code forsiieged services, features as
service add-ons, and translation to formal languagesdorous analysis.

CRresshas now shown its worth in four rather different applicat@mains: IN,
Internet Telephony, IVR and web services. The toolset itgibe, having been used on
four different platforms. @essaccepts diagrams drawn with three existing graphical
editors, and generates code in five different languages.thdrefore an approach of
wide practical and theoretical benefit.

References

1. T. Andrewset al., editors. Business Process Execution Language for Web Services. Version
1.1. BEA, IBM, Microsoft, SAP, Siebel, May 2003.

2. A. Arkin et al., editors. Web Services Business Process Execution Language. Version 2.0.
OASIS, Billerica, Massachusetts, Feb. 2005.

3. BPMI. Business Process Modeling Notation. Version 1.0. Business Process Management
Initiative, May 2004.

4. A. Ferrara. Web services: A process algebra approacRrdn 2nd. Intl. Conf. on Service-
Oriented Computing, 242—-251. ACM Press, New York, Nov. 2004.

5. H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compgihikrification for web service
choreography. I2nd. Intl. Conf. on Web Services, San Diego, California, July 2004.

6. K. J. Turner. Formalising ther@seL feature notation. In M. H. Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions, 241-256. 10S Press, Amsterdam, May 2000.

7. K. J. Turner. Modelling SIP services using@€ss In D. A. Peled and M. Y. Vardi, editors,
Proc. FORTE XV, LNCS 2529, 162-177. Springer, Berlin, Nov. 2002.

8. K. J. Turner. Analysing interactive voice servic€mputer Networks, 45(5):665-685, Aug.
2004.

9. K. J. Turner. Test generation for radiotherapy acceadesatSoftware Tools for Technology
Transfer, Oct. 2004, in press.

10. K. J. Turner. Validating feature-based specificatioBsftware Practice and Experience,
May 2005, in press.

