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Abstract. Technology to support care at home is a promising alternative to tra-

ditional approaches. However, home care systems present significant technical 

challenges. For example, it is difficult to make such systems flexible, adaptable, 

and controllable by users. The authors have created a prototype system that uses 

policy-based management of home care services. Conflict detection and resolu-

tion for home care policies have been investigated. We identify three types of 

conflicts in policy-based home care systems: conflicts that result from apparently 

separate triggers, conflicts among policies of multiple stakeholders, and conflicts 

resulting from apparently unrelated actions. We systematically analyse the types 

of policy conflicts, and propose solutions to enhance our existing policy language 

and policy system to tackle these conflicts. The enhanced solutions are illustrated 

through examples.  
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1   Introduction 

Policies have emerged as a promising and more flexible alternative to features. Among 

the benefits of policies, they are much more user-oriented. However, policies are prone 

to conflicts much as features are prone to interactions. This paper examines the issues 

of policy conflict in a novel application domain: home care. 

It is predicted that the growing percentage of older people will have enormous im-

pact on the demand for care services. This will exert huge pressures on the resources of 

existing care services [3]. Increasingly, providing care at home is seen as a promising 

alternative to traditional healthcare solutions. By making use of sensors, home net-

works and communications, older people can prolong independent living in their own 

homes. Remaining in a familiar environment while being taken care of also improves 



their quality of life. Their families and informal carers can also be relieved of constant 

worry whether those in care are well. 

The hardware to enable home care services, such as sensor technologies and com-

munications, has matured in terms of cost and availability. Providing software solu-

tions to deliver home care service, however, remains a challenging task. Most home 

care systems have been created in an ad hoc way. The systems are usually hand-crafted 

and manually customised to the needs of individual scenarios. Because the solutions for 

home care services are hard-coded, even simple changes in services requires an on-site 

visit by specially trained personnel. They are therefore costly to change. 

Proprietary, off-the-shelf telecare products suffer from similar problems. The func-

tions of a product are typically fixed in special-purpose devices. Data from these de-

vices cannot easily be accessed, and the devices work only with products from the same 

company. Domestic health monitoring and home automation are currently very limited.  

The major issues in home care delivery are flexibility, adaptability, customisability 

and cost. We have successfully demonstrated that it is possible to use a policy-based 

system to integrate data from a variety of home sensors. Sensor data is used to support a 

variety of home automation and home care services [3]. Considerable research remains 

to realise the potential of this work and to demonstrate its value in supporting care of 

older people. One major issue is the detection and resolution of policy conflicts, which 

is the focus of this paper. 

Essentially, policies are rules that define the behaviour of a system. A typical policy 

consists of a trigger, a condition and an action. There are two basic types of policies: 

authorization policies and obligation policies. Authorization policies give a set of 

subjects the authority to carry out some actions upon a set of target objects; in negative 

form, they require subjects to refrain from doing so. Obligation policies specify that a 

set of subjects is responsible for taking some actions upon the target objects when a 

certain trigger event is received and the some conditions are satisfied. 

When enforcing the policies, it is possible that multiple policies may conflict with 

each other. We use the following general definition of policy conflict: two policies are 

said to conflict with each other if there is inconsistency between them. The classifica-

tion of conflicts by Moffet et al. [1] is discussed later.  

When applying policy-based management to home care systems, we observe that 

certain classes of policy interaction are unique to this domain: 

• policy rules of multiple stakeholders may conflict  



• policy actions resulting from apparently different triggers may interact according to 

changing situations  

• policy actions may conflict over time. 

The issues in a policy-based home care system are as follows. What types of the 

policy interactions should be tackled inside the policy system? What type of interac-

tions should be tackled outside the policy system? If the policy interaction is tackled by 

the policy system, how should it be handled?  

Based on the analysis of the problems, we propose a solution to tackle the above 

issues. Our solution is built on top of our previous work on the ACCENT project [4]. In 

order to explain our solution, we will first introduce the previous work on ACCENT. The 

paper is organized as follows. Section 2 briefly describes the policy language for home 

care. Section 3 presents how policies are deployed and enforced inside the home care 

system. In section 4, policy conflict issues in home care systems are identified and 

analysed. A solution for resolving these conflicts is proposed in section 5. Related work 

is discussed in section 6. Finally, in section 7 we describe the current status of the work.  

2   Policy Language for Home Care Systems 

The policy language for care at home builds on our previous work for call control [4]. 

To allow use in different application domains, the policy language has two parts:  

• the domain-independent core policy language defines the structure of policies (e.g. 

their combinations) and general attributes of policies (e.g. metadata) 

• domain-specific extensions reflect specialisations for each kind of application.  

A policy rule consists of three parts: trigger, condition and action. Although the core 

language defines some of these, specific elements are normally defined per-domain. 

The core policy language is defined in [4], with its specialization for home care in [3].  

A home care policy consists of a set of policy attributes and a set of policy rules. The 

attributes of a home care policy include the following: 

• id uniquely identifies the policy in the policy store. 

• description explains the purpose of the policy in plain text.   

• owner indicates the entity that the policy belongs to. A notation similar to email 

addresses is used, e.g. tom@house1.address2.city3.country4.  

• applies_ to identifies the entities to which a policy applies (e.g. sensors, people, 

virtual entities l computer programs). An email-like notation is used for entities:  



1@movement.kitchen.house1.address2.city3.country4 means movement sensor 1 in 

the kitchen of house1. Omitting ‘1’ means any movement sensor in this kitchen. 

• preference states how strongly the policy definer feels about it, and represents the 

modality of the policy. Examples are should, should not. Internally the value of this 

attribute is represented as integer (which may be positive or negative) . 

• valid_from and valid_to specify the time period during which a policy is valid  

• profile is used to group the policies. A policy with an empty profile is always ap-

plicable, while one with a non-empty profile must match the user’s current profile.   

• enabled states whether the policy system should consider a policy or not. 

• changed indicates the last-modified time of a policy. 

For home care policy rules, a generic trigger device_in is used: its arguments indi-

cate the trigger type and the sensor that caused it. A trigger sets environment variables 

to reflect the current state of the environment. A policy condition can make use of these 

variables to check whether it is eligible for execution. A generic action device_out is 

defined to instruct actuators to execute actions. This action has arguments to indicate 

the actuator, the action to be executed and the parameters of the action.   

In our home care system, a home care service is a rule-based application described 

by policy rules. An example policy for home care is shown in Figure 1. Dementia pa-

tients often wander at night, and this worries their relatives. The policy in figure 1 states 

that, if movement is detected in the bedroom when it is night (10PM–7AM), remind the 

patient to go back to bed. The obvious closing tags are omitted in the XML definition. 

<policy_rule> 

    < trigger arg1="bedroom" arg2="movement"> 

        device_in(arg1,arg2) 

    < condition> 

        < parameter>time 

        < operator>in 

        < value>22:00:00..07:00:00 

    < action arg1=":bedroom_speaker" 

      arg2="please go to bed">speak(arg1,arg2) 

Figure 1. Night-Time Wandering Reminder Policy Example 

 



3   Deployment and Enforcement of Policies 

Figure 2 illustrates how policies are deployed and enforced in the policy system. 

Error! Objects cannot be created from editing field codes. 

Figure 2. Policy Deployment and Enforcement in A Home Care System 

3.1 Policy Deployment 

At design time, a policy is defined using editing tools such as a policy wizard. This 

policy is then passed to the policy deployment module (step 1). Since the policy may 

conflict with the existing policies in the policy store, it is passed to the static analysis 

module to check for conflicts (step 2). The static analysis module retrieves related 

policies from the policy store (step 3), performs conflict detection analysis, and returns 

the result to the policy deployment module (step 4). If there is conflict, the user is no-

tified. If there is no conflict, the policy is saved in the policy store (step 5).  

3.2   Policy Enforcement 

The policy enforcement module makes decisions on which actions should be executed 

and issues them for execution. At run time, a sensor sends out an event through the 

event service (step 1). The event is passed to the policy enforcement module (step 2). 

The policy enforcement module retrieves relevant policies from the policy store (step 

3). For each retrieved policy, the policy enforcement module checks the trigger part and 

the condition part of the policy against input triggers and the current environment set-

ting. If the trigger matches and the policy conditions hold, the corresponding policy 

action is added to the set of potential actions. Once the policy enforcement module 

finishes checking the relevant policies, there will be a set of potential actions. If there is 

more than one action in the set, this is passed to the dynamic analysis module for de-

tection and resolution of conflicts (step 4). 

Our existing policy system uses resolution policies to detect and resolve conflicts 

among actions. The structure of a resolution policy is very similar to that of an ordinary 

policy. The major difference is that in the resolution policy, the triggers are the actions 

of regular policies rather than ordinary triggers from sensors. A detailed description of 

resolution policies can be found in [5]. The dynamic analysis module retrieves resolu-

tion policies from the policy store (step 5), and applies these to the set of potential ac-

tions to select the most appropriate actions if there are conflicts. This action is then 

passed back to the policy enforcement module (step 6). The policy enforcement module 



sends the actions to the event service (step 7). The event service acts as a broker, 

passing commands to actuators for execution (step 8).   

A resolution policy supports two types of resolution actions: specific actions and 

generic actions. For specific actions, a resolution policy specifies what to do when there 

are conflicting actions. The outcome is not limited to the set of conflicting actions. For 

generic actions, the resolution is chosen from among the conflicting actions. This relies 

on comparing the attributes of conflicting policies. Borrowing from our previous work, 

the following generic actions are used in home care:  

• apply_newer, apply_older: decides whether the newer or older policy is chosen. 

• apply_one: chooses some action from the set of potential actions. 

• apply_negative, apply_positive, apply_stronger, apply_weaker: decides the action 

by checking the value of policy preferences. 

• apply_inferior, apply_superior: uses the applies_to attribute to decide within one 

hierarchy whether the superior’s policy or inferior’s policy is chosen  

4   Policy Conflicts in Home Care Systems 

4.1. Detection and Resolution of Policy Conflicts in General 

To simplify our analysis, for now we only consider a policy with a single rule. A home 

care policy has the following elements: subject, target, trigger, condition, action, owner 

and preference. Much as for Ponder (http://ponder2.net) we consider two types of 

policies: authorisation (A) and obligation (O). For authorisation policies, the subject is 

authorised to take an action on a target object. For obligation policies, the subject is 

obliged to take action on the target when receiving a trigger and the condition is satis-

fied. If we combine the type of policy with the modality, we get the following policy 

modes: positive authorisation (A+), negative authorisation (A-), positive obligation 

(O+), and negative obligation (O-). 

Type of Policy Conflicts in Home Care. According to Moffet and Lupu’s 

classification [1] [6], there are two types of policy conflicts: modality conflicts and goal 

conflicts. 

Modality conflicts can be detected by looking at the policy alone. For modality 

conflicts, the following attributes (subject, target, action) of two policies overlap, but 



the mode of the policy contradicts. The other attributes of the policy may be different, 

including trigger, condition and owner. There are three possible modality conflicts: 

• A+, A- : one policy states that the subject is authorised to take some action, but the 

other policy prohibits the subject from performing this action. 

• O+, O- : one policy states that the subject is obliged to take some action, but the other 

policy states that the subject is obliged not to take this action.  

• A-, O+ : one policy states that the subject is obliged to take some action, but the other 

policy states that the subject is not authorised to do this. 

A+/O- is not a policy conflict, since no actions result from this combination: the 

subject is authorized to take some actions, but must refrain from taking these [1] [6].  

Goal conflicts need application-specific information to be detected. Moffet et al. [1] 

identify four types of conflicts: conflicts of imperative goals, in particular for re-

sources; conflicts of authority goals, including conflict of duty and conflict of interest; 

multiple managers; and self-management.  

In the home care domain, we consider actuators as the target of policy. A sensor, 

person or computer program is considered as a subject of policy-based management. 

Inside the policy system, there will be an agent for each such entity to act on its behalf. 

Due to lack of computation power on sensors, our policy system employs a centralised 

server for enforcing policies. This implies that the policy server acts as an agent for all 

subjects of the policy system. 

In home care systems, modality conflicts may arise in one owner’s policies due to 

overlapping situations. They also may arise between multiple owners’ policies. For 

goal conflicts, we are currently particularly interested in multiple managers and con-

flicts for resources since many care services are represented as obligation policies. 

These services are triggered by events from sensors. 

Detection Conflicts: Statically vs. Dynamically. Modality conflicts can be detected at 

definition time or at run time. Detection is achieved by comparing the subject, target, 

action and preference of two policies. This indicates whether there are potential 

conflicts. For modality conflicts, if the situations of two policies are exactly the same, 

this potential conflict becomes definite; the conflict should be eliminated at definition 

time. If conflict depends on the evaluation of a run-time situation, this type of potential 

conflict may still need to be detected and resolved at run-time.  

Detecting goal conflicts needs application-specific information. This may use an 

explicit definition of conflict situations. It may also use automatic reasoning about the 



effects on goals if the semantics of these is properly specified. Our policy system sup-

ports the specification of conflicting situations by the user.  

As seen in section 3, our policy system supports both static analysis and dynamic 

analysis. Dynamic analysis is performed when a trigger from sensors is received and 

processed. It requires resources and time, and may slow down the decision making 

process of the policy system. Comparing with dynamic analysis, static analysis is more 

desirable as it reduces the burden on dynamic conflict. However, not all conflicts can be 

detected by static analysis, especially potential conflicts.  

Resolving Conflicts. Once a conflict is detected, conflicting policies need to be 

resolved. This can be by achieved by notifying the user and asking for a decision, or it 

can be done automatically.  

For automated resolution, our policy system supports both specific actions and ge-

neric actions. For policies that belong to a single owner, several policy attributes can be 

used to choose the resolution action. For example, the policy language supports 

choosing an action with the strongest preference. For policies that belong to different 

users in one organization, the ‘distance’ between a policy and the managed object can 

be used to choose the resolution action. In our policy language, this distance is derived 

from the applies_to attribute. Suppose one policy applies to @cs.stir.ac.uk and the 

other policy applies to john@cs.stir.ac.uk. An apply_superior resolution action will 

choose the policy which applies to @cs.stir.ac.uk as the higher domain in the hierarchy. 

4.2 Special Issues for Policy Conflicts in Home Care 

In home care systems, beside the modality conflicts discussed above we observe the 

following three special types of conflicts between policy actions. How to deal with 

these conflicts is the focus of this paper. Should the interaction be tackled inside the 

policy system, or should it be dealt with outside the policy system (e.g. by the actua-

tors)? If the interaction is tackled by the policy server, how can we enhance our existing 

policy system to handle it? If the interaction is tackled outside the policy server, what 

functionalities are required from the external system?  



Dependency among Situations. The actions resulting from different situations may 

conflict with each other, and situations may have interdependencies. The situation of 

obligation is common in a home setting. These situations rely on context information. 

As Dey points out [7], there are different levels of context information. High-level 

situations can be inferred from low-level sensor data, and the trigger from one sensor 

can be used to infer multiple situations. As an example, a ‘door open’ sensor can detect 

the situation of the door being left open. Suppose a policy states that when the front 

door is left open, a reminder should be given to the resident to close the door. 

Combining the door sensor and the sensor in the door lock, a new situation can be 

detected: the door has been broken open. Suppose another policy states that, when the 

door is broken open, the resident should be advised stay in his/her room to call for help. 

When a door is broken into, which action should be taken [8]? 

In the above case, if we specify the two situations as two separate triggers, there will 

be no policy conflict and two actions will be executed. It does not make sense to remind 

the user to lock the door, while at the same time stating that there has been a break-in.     

In this example, we can see that situations in home care can have logic relationships 

between them. One situation may be implied by another, or two situations may be im-

plied by triggers originating from the same sensor. Besides logical relationships, there 

are other relationships such as containment. For example, one policy reacts to move-

ment in the bedroom, while another reacts to movement in any room of the house. The 

situation of the second policy contains that of the first. 

A policy system needs to be able to detect and resolve policy conflicts due to de-

pendent situations. The issue is how to specify the triggers and conditions of the poli-

cies properly so that the conflicts are detected.  

Multiple Stakeholders.  In home care systems, policies may be defined by multiple 

organizations (e.g. a social work department, a surgery, a clinic). Their policies may 

conflict with each other. How can the conflicts of multiple stakeholders be handled? 

In fact, conflicts among multiple stakeholders are not much different from the case 

of a single stakeholder. The difference is in resolution of the conflicts. If the resolution 

action is chosen from one of the conflicting actions, dealing with multiple stakeholders 

is an issue. When policies are defined by different organizations, there is no hierarchy 

among the stakeholders. Some solution is needed to decide how one stakeholder’s 

policies should be evaluated compared to other stakeholders’ policies.  



Interactions between Actions over Time. The policy actions in a home care system 

take time to complete. It is therefore possible for new actions to conflict with ongoing 

actions. Suppose a medical reminder service can alert a patient to take medicine at 

certain times. This system will remind the patient again if there is no response to the 

first reminder. While the medical reminder is running, a more urgent situation such as a 

fire may be detected in the house. Following the fire alarm policy, the system will 

remind the user to leave the house immediately.   

How to deal with these interactions in a policy-based system? A fundamental ques-

tion is whether they should be dealt within the policy system or not.  

5   Enhancement to the Home Care Policy Systems 

5.1   Tackling Dependencies among Situations 

A situation is specified jointly by the trigger and the condition of a policy. To tackle 

dependencies among situations, we introduce a situation dependency graph (see figure 

4). The nodes on the left are the sensors. The nodes in the middle and on the right are 

situation nodes. A situation node receives inputs from the nodes on its left and evalu-

ates its function to get a new value. If the value of a situation node has changed, it will 

send the update to other situation nodes that depend on it. Each situation node also 

supports queries for its current value. In figure 4, situation B depends on sensor A, thus 

there is a directional link from A to B.  

For a policy system to detect conflicts among dependent situations, the trigger part 

of a policy must specify all the sensors that are used to derive a situation. In the de-

pendency graph, these sensors are the root nodes of the situation node. In the condition 

part of the policy, an environment variable with the name of the situation node is used. 

This environment variable is set up by the policy system to keep the most current value 

of the situation node. In figure 4 for example, if a policy requires situation F, then the 

trigger part of the policy is the list {A, C, E}. The parameter of the condition is F.  
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Figure 3. Situation Dependency Graph 

The dependency graph is designed and maintained by the service designer. If there 

are new sensors or new software module installed to detect new situations, the de-

pendency graph is updated to reflect the changes. This may affect the triggers and 

conditions available to the policy definer when using the policy editing tool.  

The example of ‘door open’ vs. ‘door broken into’ will show how this works. The 

‘door open’ reminder policy has the following elements: 

applies_to:[door1] 

trigger: [door1:] 

condition: door_open eq true  

action:remind(reminder_bedroom, door left open) 

preference: 3 

The ‘door broken into’ policy has the following elements:  

applies_to: [door1, lock2]  

trigger: [door1:open, lock2:broken]  

condition: broken_into eq true 

action:remind(reminder_bedroom, door broken into) 

preference: 5 

 In the above policies, the trigger of the first policy must originate from a specific 

door sensor, but does not require a particular type of trigger as this is implied by the 

condition. The trigger of the second policy originates from door1 with type open, and 

from lock2 with type broken. When the door is broken into, the policy server will re-

ceive triggers from the door sensor and door lock sensor at the same time. It will re-

trieve policies that apply to any of these sensors. Since the triggers and conditions of 



both policies are satisfied, there will be two actions. These two actions compete for the 

same reminder service, so there are conflicts. In our system, these conditions are han-

dled by part of a resolution policy. Other parts of the resolution policy decide which 

action to choose. For example, a policy preference may be used in the generic action 

apply_stronger. In this case, the action from the second policy would be executed. 

5.2   Resolving Conflicts of Multiple Stakeholders  

Detecting conflicts among multiple stakeholders is the same as for a single stakeholder 

except that the owners of the policies differ.  We therefore add a new generic resolu-

tion action: apply_stakeholder. This relies on the partial ordering among stakeholders 

to choose one action among the conflicting ones according to a predefined order among 

stakeholders. We believe that a total ordering of stakeholders in all situations is not 

sensible in home care. In a multiple organization setting, the ordering among stake-

holders is not fixed and is valid only under certain conditions (e.g. when performing 

certain actions). 

Specify the Order among Stakeholders. We make use of resolution policies to 

specify the order among stakeholders. The condition of the ordering rule can compare 

the attributes of the action and the policy. The new action set_order has been 

introduced to specify the ordering among stakeholders. This action has three 

parameters: the two different owners of the policies, and the relational operator 

between the owners (gt, lt, eq, unspecified). gt means the first owner ranks higher than 

the second, with the other operators having the obvious interpretation. 

The example of Figure 4 shows that the warden has higher priority over the tenant 

for setting the TV volume at night time (from 23:00 to 7:00). 

<conditions> 

  < and> 

  < condition> 

    < parameter>time 

    < operator>in 

    < value>23:00..07:00 

  < condition> 

    < parameter>action 

    < operator>eq 

    < value>device_out(TV, setVolume)  



  < action arg1=":warden" arg2=":tenant" 

    arg3=”gt”>set_order(arg1,arg2, arg3)  

Figure 4. Example of specifying Order among Stakeholders 

Multiple orders among stakeholders can be specified under the same conditions. The 

relative orders among stakeholders are transitive. That is, if owner A is ranked higher 

than owner B and owner B is ranked higher than owner C, then owner A is ranked 

higher than owner C. This can help to simplify specification of the ordering.  

The stakeholder parameters of the set_order action can also be roles. In the above 

example, a policy owner whose role is warden has higher priority than a policy owner 

whose role is tenant. Our policy system support roles through policy variables, which 

can contain a single value or a list of values. 

Applying Order among Stakeholders. When conflicts are detected between policies 

of different owners, the resolution action apply_stakeholder can be used. Suppose there 

are conflicting policies that want to set the volume of the TV differently. The condition 

part of a resolution policy would check whether both their targets are the same TV; 

whether both actions are set_volume, and whether the volume levels are different. The 

policy preferences would indicate if both policies are positive obligation policies. The 

action part of the resolution would use apply_stakeholder to ensure that the warden’s 

policy is respected.   

5.3   Handling Interactions of Policy Actions over Time 

 To handle the policy interactions over time inside the policy system, we need to be 

able to detect the conflicts and then resolve the conflicts. According to Moffet’s clas-

sification of policy conflicts, the interactions between a new action and the existing 

actions are goal conflicts (or resource conflicts) rather than modality conflicts. These 

are action conflicts, not policy conflicts. Detecting conflicts between new actions and 

existing running actions needs the policy system to keep a record of all running actions. 

To find out whether a new action conflicts with ongoing actions, applica-

tion-specific information is needed. This can be achieved by asking the user to specify 

the specific conditions to check. Similarly, resolving conflicts can be achieved by 

asking the user to resolve the choice of action manually. Even after an action is stopped 

due to conflict how to deal with it later also needs to be specified. In addition, only 

certain kinds of actions may suffer from this kind of conflict. For simplicity, we 



therefore move the handling of action conflicts from the policy server to the actuators in 

our system. In the example given earlier, the alarm system would be an actuator and 

would use a priority-based approach to handle actions that conflict over time. A new 

alarm with a higher priority would stop an existing alarm with lower priority. 

6   Related Work 

Policy-based management has been applied in many areas, for example network and 

distributed systems management [2], telecommunications [14] [5], pervasive comput-

ing environments [10, 11, and 12], semantic web services [13], and large evolving 

enterprises [9]. 

The present paper has used the taxonomy of policy conflicts in [1] that describes 

how policy conflicts can be detected and resolved at definition time or at run time. [6] 

reviews policies in distributed systems and proposes using meta-policies to detect and 

resolve conflicts in one organization. However, this work does not tackle the problem 

of conflicting policies among multiple stakeholders. In addition, the solution in [6] is 

mostly for static detection and resolution of policy conflicts. Dunlop et al. have pro-

posed a solution to detect conflicts dynamically using deontic logic, but this tackles 

only modality conflicts. [10, 11] propose a solution based on reasoning about the ef-

fects of actions to detect and resolve goal conflicts in pervasive computing environ-

ments. The aim is to guarantee the execution order of actions resulting from a single 

trigger. However, this work also does not deal with policy conflicts among multiple 

stakeholders.  

7   Conclusion 

The paper has focused on conflict issues when using policy-based management in 

home care systems. Three specialised kinds of conflict have been identified in home 

care: multiple stakeholder conflicts, policy conflicts due to dependency among situa-

tions, and conflicts among actions over time. Based on the analysis of these conflicts, 

we have proposed a solution to enhance our existing policy system to handle these 

conflicts. This has included extensions to the policy language and the policy system. 

The enhancements also have implications for other part of the home care system, in-



cluding sensors and actuators. We plan to evaluate the approach through field trials in 

actual homes.  
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