
Feng Wang and Kenneth J. Turner. Policy Conflicts in Home Care Systems,
in Lydie du Bousquet and Jean-Luc Richier (eds.), Proc. 9th Int. Conf.
on Feature Interactions in Software and Communications Systems,
pp. 54-65, IOS Press, Amsterdam, May 2008.

Policy Conflicts in Home Care Systems

Feng Wang and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, UK

fw@cs.stir.ac.uk, kjt@cs.stir.ac.uk

Abstract. Technology to support care at home is a promising alternative to tra-

ditional approaches. However, home care systems present significant technical

challenges. For example, it is difficult to make such systems flexible, adaptable,

and controllable by users. The authors have created a prototype system that uses

policy-based management of home care services. Conflict detection and resolu-

tion for home care policies have been investigated. We identify three types of

conflicts in policy-based home care systems: conflicts that result from apparently

separate triggers, conflicts among policies of multiple stakeholders, and conflicts

resulting from apparently unrelated actions. We systematically analyse the types

of policy conflicts, and propose solutions to enhance our existing policy language

and policy system to tackle these conflicts. The enhanced solutions are illustrated

through examples.

Keywords: Policy-based management, policy conflict, home care system.

1 Introduction

Policies have emerged as a promising and more flexible alternative to features. Among

the benefits of policies, they are much more user-oriented. However, policies are prone

to conflicts much as features are prone to interactions. This paper examines the issues

of policy conflict in a novel application domain: home care.

It is predicted that the growing percentage of older people will have enormous im-

pact on the demand for care services. This will exert huge pressures on the resources of

existing care services [3]. Increasingly, providing care at home is seen as a promising

alternative to traditional healthcare solutions. By making use of sensors, home net-

works and communications, older people can prolong independent living in their own

homes. Remaining in a familiar environment while being taken care of also improves

their quality of life. Their families and informal carers can also be relieved of constant

worry whether those in care are well.

The hardware to enable home care services, such as sensor technologies and com-

munications, has matured in terms of cost and availability. Providing software solu-

tions to deliver home care service, however, remains a challenging task. Most home

care systems have been created in an ad hoc way. The systems are usually hand-crafted

and manually customised to the needs of individual scenarios. Because the solutions for

home care services are hard-coded, even simple changes in services requires an on-site

visit by specially trained personnel. They are therefore costly to change.

Proprietary, off-the-shelf telecare products suffer from similar problems. The func-

tions of a product are typically fixed in special-purpose devices. Data from these de-

vices cannot easily be accessed, and the devices work only with products from the same

company. Domestic health monitoring and home automation are currently very limited.

The major issues in home care delivery are flexibility, adaptability, customisability

and cost. We have successfully demonstrated that it is possible to use a policy-based

system to integrate data from a variety of home sensors. Sensor data is used to support a

variety of home automation and home care services [3]. Considerable research remains

to realise the potential of this work and to demonstrate its value in supporting care of

older people. One major issue is the detection and resolution of policy conflicts, which

is the focus of this paper.

Essentially, policies are rules that define the behaviour of a system. A typical policy

consists of a trigger, a condition and an action. There are two basic types of policies:

authorization policies and obligation policies. Authorization policies give a set of

subjects the authority to carry out some actions upon a set of target objects; in negative

form, they require subjects to refrain from doing so. Obligation policies specify that a

set of subjects is responsible for taking some actions upon the target objects when a

certain trigger event is received and the some conditions are satisfied.

When enforcing the policies, it is possible that multiple policies may conflict with

each other. We use the following general definition of policy conflict: two policies are

said to conflict with each other if there is inconsistency between them. The classifica-

tion of conflicts by Moffet et al. [1] is discussed later.

When applying policy-based management to home care systems, we observe that

certain classes of policy interaction are unique to this domain:

• policy rules of multiple stakeholders may conflict

• policy actions resulting from apparently different triggers may interact according to

changing situations

• policy actions may conflict over time.

The issues in a policy-based home care system are as follows. What types of the

policy interactions should be tackled inside the policy system? What type of interac-

tions should be tackled outside the policy system? If the policy interaction is tackled by

the policy system, how should it be handled?

Based on the analysis of the problems, we propose a solution to tackle the above

issues. Our solution is built on top of our previous work on the ACCENT project [4]. In

order to explain our solution, we will first introduce the previous work on ACCENT. The

paper is organized as follows. Section 2 briefly describes the policy language for home

care. Section 3 presents how policies are deployed and enforced inside the home care

system. In section 4, policy conflict issues in home care systems are identified and

analysed. A solution for resolving these conflicts is proposed in section 5. Related work

is discussed in section 6. Finally, in section 7 we describe the current status of the work.

2 Policy Language for Home Care Systems

The policy language for care at home builds on our previous work for call control [4].

To allow use in different application domains, the policy language has two parts:

• the domain-independent core policy language defines the structure of policies (e.g.

their combinations) and general attributes of policies (e.g. metadata)

• domain-specific extensions reflect specialisations for each kind of application.

A policy rule consists of three parts: trigger, condition and action. Although the core

language defines some of these, specific elements are normally defined per-domain.

The core policy language is defined in [4], with its specialization for home care in [3].

A home care policy consists of a set of policy attributes and a set of policy rules. The

attributes of a home care policy include the following:

• id uniquely identifies the policy in the policy store.

• description explains the purpose of the policy in plain text.

• owner indicates the entity that the policy belongs to. A notation similar to email

addresses is used, e.g. tom@house1.address2.city3.country4.

• applies_ to identifies the entities to which a policy applies (e.g. sensors, people,

virtual entities l computer programs). An email-like notation is used for entities:

1@movement.kitchen.house1.address2.city3.country4 means movement sensor 1 in

the kitchen of house1. Omitting ‘1’ means any movement sensor in this kitchen.

• preference states how strongly the policy definer feels about it, and represents the

modality of the policy. Examples are should, should not. Internally the value of this

attribute is represented as integer (which may be positive or negative) .

• valid_from and valid_to specify the time period during which a policy is valid

• profile is used to group the policies. A policy with an empty profile is always ap-

plicable, while one with a non-empty profile must match the user’s current profile.

• enabled states whether the policy system should consider a policy or not.

• changed indicates the last-modified time of a policy.

For home care policy rules, a generic trigger device_in is used: its arguments indi-

cate the trigger type and the sensor that caused it. A trigger sets environment variables

to reflect the current state of the environment. A policy condition can make use of these

variables to check whether it is eligible for execution. A generic action device_out is

defined to instruct actuators to execute actions. This action has arguments to indicate

the actuator, the action to be executed and the parameters of the action.

In our home care system, a home care service is a rule-based application described

by policy rules. An example policy for home care is shown in Figure 1. Dementia pa-

tients often wander at night, and this worries their relatives. The policy in figure 1 states

that, if movement is detected in the bedroom when it is night (10PM–7AM), remind the

patient to go back to bed. The obvious closing tags are omitted in the XML definition.

<policy_rule>

 < trigger arg1="bedroom" arg2="movement">

 device_in(arg1,arg2)

 < condition>

 < parameter>time

 < operator>in

 < value>22:00:00..07:00:00

 < action arg1=":bedroom_speaker"

 arg2="please go to bed">speak(arg1,arg2)

Figure 1. Night-Time Wandering Reminder Policy Example

3 Deployment and Enforcement of Policies

Figure 2 illustrates how policies are deployed and enforced in the policy system.

Error! Objects cannot be created from editing field codes.

Figure 2. Policy Deployment and Enforcement in A Home Care System

3.1 Policy Deployment

At design time, a policy is defined using editing tools such as a policy wizard. This

policy is then passed to the policy deployment module (step 1). Since the policy may

conflict with the existing policies in the policy store, it is passed to the static analysis

module to check for conflicts (step 2). The static analysis module retrieves related

policies from the policy store (step 3), performs conflict detection analysis, and returns

the result to the policy deployment module (step 4). If there is conflict, the user is no-

tified. If there is no conflict, the policy is saved in the policy store (step 5).

3.2 Policy Enforcement

The policy enforcement module makes decisions on which actions should be executed

and issues them for execution. At run time, a sensor sends out an event through the

event service (step 1). The event is passed to the policy enforcement module (step 2).

The policy enforcement module retrieves relevant policies from the policy store (step

3). For each retrieved policy, the policy enforcement module checks the trigger part and

the condition part of the policy against input triggers and the current environment set-

ting. If the trigger matches and the policy conditions hold, the corresponding policy

action is added to the set of potential actions. Once the policy enforcement module

finishes checking the relevant policies, there will be a set of potential actions. If there is

more than one action in the set, this is passed to the dynamic analysis module for de-

tection and resolution of conflicts (step 4).

Our existing policy system uses resolution policies to detect and resolve conflicts

among actions. The structure of a resolution policy is very similar to that of an ordinary

policy. The major difference is that in the resolution policy, the triggers are the actions

of regular policies rather than ordinary triggers from sensors. A detailed description of

resolution policies can be found in [5]. The dynamic analysis module retrieves resolu-

tion policies from the policy store (step 5), and applies these to the set of potential ac-

tions to select the most appropriate actions if there are conflicts. This action is then

passed back to the policy enforcement module (step 6). The policy enforcement module

sends the actions to the event service (step 7). The event service acts as a broker,

passing commands to actuators for execution (step 8).

A resolution policy supports two types of resolution actions: specific actions and

generic actions. For specific actions, a resolution policy specifies what to do when there

are conflicting actions. The outcome is not limited to the set of conflicting actions. For

generic actions, the resolution is chosen from among the conflicting actions. This relies

on comparing the attributes of conflicting policies. Borrowing from our previous work,

the following generic actions are used in home care:

• apply_newer, apply_older: decides whether the newer or older policy is chosen.

• apply_one: chooses some action from the set of potential actions.

• apply_negative, apply_positive, apply_stronger, apply_weaker: decides the action

by checking the value of policy preferences.

• apply_inferior, apply_superior: uses the applies_to attribute to decide within one

hierarchy whether the superior’s policy or inferior’s policy is chosen

4 Policy Conflicts in Home Care Systems

4.1. Detection and Resolution of Policy Conflicts in General

To simplify our analysis, for now we only consider a policy with a single rule. A home

care policy has the following elements: subject, target, trigger, condition, action, owner

and preference. Much as for Ponder (http://ponder2.net) we consider two types of

policies: authorisation (A) and obligation (O). For authorisation policies, the subject is

authorised to take an action on a target object. For obligation policies, the subject is

obliged to take action on the target when receiving a trigger and the condition is satis-

fied. If we combine the type of policy with the modality, we get the following policy

modes: positive authorisation (A+), negative authorisation (A-), positive obligation

(O+), and negative obligation (O-).

Type of Policy Conflicts in Home Care. According to Moffet and Lupu’s

classification [1] [6], there are two types of policy conflicts: modality conflicts and goal

conflicts.

Modality conflicts can be detected by looking at the policy alone. For modality

conflicts, the following attributes (subject, target, action) of two policies overlap, but

the mode of the policy contradicts. The other attributes of the policy may be different,

including trigger, condition and owner. There are three possible modality conflicts:

• A+, A- : one policy states that the subject is authorised to take some action, but the

other policy prohibits the subject from performing this action.

• O+, O- : one policy states that the subject is obliged to take some action, but the other

policy states that the subject is obliged not to take this action.

• A-, O+ : one policy states that the subject is obliged to take some action, but the other

policy states that the subject is not authorised to do this.

A+/O- is not a policy conflict, since no actions result from this combination: the

subject is authorized to take some actions, but must refrain from taking these [1] [6].

Goal conflicts need application-specific information to be detected. Moffet et al. [1]

identify four types of conflicts: conflicts of imperative goals, in particular for re-

sources; conflicts of authority goals, including conflict of duty and conflict of interest;

multiple managers; and self-management.

In the home care domain, we consider actuators as the target of policy. A sensor,

person or computer program is considered as a subject of policy-based management.

Inside the policy system, there will be an agent for each such entity to act on its behalf.

Due to lack of computation power on sensors, our policy system employs a centralised

server for enforcing policies. This implies that the policy server acts as an agent for all

subjects of the policy system.

In home care systems, modality conflicts may arise in one owner’s policies due to

overlapping situations. They also may arise between multiple owners’ policies. For

goal conflicts, we are currently particularly interested in multiple managers and con-

flicts for resources since many care services are represented as obligation policies.

These services are triggered by events from sensors.

Detection Conflicts: Statically vs. Dynamically. Modality conflicts can be detected at

definition time or at run time. Detection is achieved by comparing the subject, target,

action and preference of two policies. This indicates whether there are potential

conflicts. For modality conflicts, if the situations of two policies are exactly the same,

this potential conflict becomes definite; the conflict should be eliminated at definition

time. If conflict depends on the evaluation of a run-time situation, this type of potential

conflict may still need to be detected and resolved at run-time.

Detecting goal conflicts needs application-specific information. This may use an

explicit definition of conflict situations. It may also use automatic reasoning about the

effects on goals if the semantics of these is properly specified. Our policy system sup-

ports the specification of conflicting situations by the user.

As seen in section 3, our policy system supports both static analysis and dynamic

analysis. Dynamic analysis is performed when a trigger from sensors is received and

processed. It requires resources and time, and may slow down the decision making

process of the policy system. Comparing with dynamic analysis, static analysis is more

desirable as it reduces the burden on dynamic conflict. However, not all conflicts can be

detected by static analysis, especially potential conflicts.

Resolving Conflicts. Once a conflict is detected, conflicting policies need to be

resolved. This can be by achieved by notifying the user and asking for a decision, or it

can be done automatically.

For automated resolution, our policy system supports both specific actions and ge-

neric actions. For policies that belong to a single owner, several policy attributes can be

used to choose the resolution action. For example, the policy language supports

choosing an action with the strongest preference. For policies that belong to different

users in one organization, the ‘distance’ between a policy and the managed object can

be used to choose the resolution action. In our policy language, this distance is derived

from the applies_to attribute. Suppose one policy applies to @cs.stir.ac.uk and the

other policy applies to john@cs.stir.ac.uk. An apply_superior resolution action will

choose the policy which applies to @cs.stir.ac.uk as the higher domain in the hierarchy.

4.2 Special Issues for Policy Conflicts in Home Care

In home care systems, beside the modality conflicts discussed above we observe the

following three special types of conflicts between policy actions. How to deal with

these conflicts is the focus of this paper. Should the interaction be tackled inside the

policy system, or should it be dealt with outside the policy system (e.g. by the actua-

tors)? If the interaction is tackled by the policy server, how can we enhance our existing

policy system to handle it? If the interaction is tackled outside the policy server, what

functionalities are required from the external system?

Dependency among Situations. The actions resulting from different situations may

conflict with each other, and situations may have interdependencies. The situation of

obligation is common in a home setting. These situations rely on context information.

As Dey points out [7], there are different levels of context information. High-level

situations can be inferred from low-level sensor data, and the trigger from one sensor

can be used to infer multiple situations. As an example, a ‘door open’ sensor can detect

the situation of the door being left open. Suppose a policy states that when the front

door is left open, a reminder should be given to the resident to close the door.

Combining the door sensor and the sensor in the door lock, a new situation can be

detected: the door has been broken open. Suppose another policy states that, when the

door is broken open, the resident should be advised stay in his/her room to call for help.

When a door is broken into, which action should be taken [8]?

In the above case, if we specify the two situations as two separate triggers, there will

be no policy conflict and two actions will be executed. It does not make sense to remind

the user to lock the door, while at the same time stating that there has been a break-in.

In this example, we can see that situations in home care can have logic relationships

between them. One situation may be implied by another, or two situations may be im-

plied by triggers originating from the same sensor. Besides logical relationships, there

are other relationships such as containment. For example, one policy reacts to move-

ment in the bedroom, while another reacts to movement in any room of the house. The

situation of the second policy contains that of the first.

A policy system needs to be able to detect and resolve policy conflicts due to de-

pendent situations. The issue is how to specify the triggers and conditions of the poli-

cies properly so that the conflicts are detected.

Multiple Stakeholders. In home care systems, policies may be defined by multiple

organizations (e.g. a social work department, a surgery, a clinic). Their policies may

conflict with each other. How can the conflicts of multiple stakeholders be handled?

In fact, conflicts among multiple stakeholders are not much different from the case

of a single stakeholder. The difference is in resolution of the conflicts. If the resolution

action is chosen from one of the conflicting actions, dealing with multiple stakeholders

is an issue. When policies are defined by different organizations, there is no hierarchy

among the stakeholders. Some solution is needed to decide how one stakeholder’s

policies should be evaluated compared to other stakeholders’ policies.

Interactions between Actions over Time. The policy actions in a home care system

take time to complete. It is therefore possible for new actions to conflict with ongoing

actions. Suppose a medical reminder service can alert a patient to take medicine at

certain times. This system will remind the patient again if there is no response to the

first reminder. While the medical reminder is running, a more urgent situation such as a

fire may be detected in the house. Following the fire alarm policy, the system will

remind the user to leave the house immediately.

How to deal with these interactions in a policy-based system? A fundamental ques-

tion is whether they should be dealt within the policy system or not.

5 Enhancement to the Home Care Policy Systems

5.1 Tackling Dependencies among Situations

A situation is specified jointly by the trigger and the condition of a policy. To tackle

dependencies among situations, we introduce a situation dependency graph (see figure

4). The nodes on the left are the sensors. The nodes in the middle and on the right are

situation nodes. A situation node receives inputs from the nodes on its left and evalu-

ates its function to get a new value. If the value of a situation node has changed, it will

send the update to other situation nodes that depend on it. Each situation node also

supports queries for its current value. In figure 4, situation B depends on sensor A, thus

there is a directional link from A to B.

For a policy system to detect conflicts among dependent situations, the trigger part

of a policy must specify all the sensors that are used to derive a situation. In the de-

pendency graph, these sensors are the root nodes of the situation node. In the condition

part of the policy, an environment variable with the name of the situation node is used.

This environment variable is set up by the policy system to keep the most current value

of the situation node. In figure 4 for example, if a policy requires situation F, then the

trigger part of the policy is the list {A, C, E}. The parameter of the condition is F.

A

C

B

D

E

F

Figure 3. Situation Dependency Graph

The dependency graph is designed and maintained by the service designer. If there

are new sensors or new software module installed to detect new situations, the de-

pendency graph is updated to reflect the changes. This may affect the triggers and

conditions available to the policy definer when using the policy editing tool.

The example of ‘door open’ vs. ‘door broken into’ will show how this works. The

‘door open’ reminder policy has the following elements:

applies_to:[door1]

trigger: [door1:]

condition: door_open eq true

action:remind(reminder_bedroom, door left open)

preference: 3

The ‘door broken into’ policy has the following elements:

applies_to: [door1, lock2]

trigger: [door1:open, lock2:broken]

condition: broken_into eq true

action:remind(reminder_bedroom, door broken into)

preference: 5

 In the above policies, the trigger of the first policy must originate from a specific

door sensor, but does not require a particular type of trigger as this is implied by the

condition. The trigger of the second policy originates from door1 with type open, and

from lock2 with type broken. When the door is broken into, the policy server will re-

ceive triggers from the door sensor and door lock sensor at the same time. It will re-

trieve policies that apply to any of these sensors. Since the triggers and conditions of

both policies are satisfied, there will be two actions. These two actions compete for the

same reminder service, so there are conflicts. In our system, these conditions are han-

dled by part of a resolution policy. Other parts of the resolution policy decide which

action to choose. For example, a policy preference may be used in the generic action

apply_stronger. In this case, the action from the second policy would be executed.

5.2 Resolving Conflicts of Multiple Stakeholders

Detecting conflicts among multiple stakeholders is the same as for a single stakeholder

except that the owners of the policies differ. We therefore add a new generic resolu-

tion action: apply_stakeholder. This relies on the partial ordering among stakeholders

to choose one action among the conflicting ones according to a predefined order among

stakeholders. We believe that a total ordering of stakeholders in all situations is not

sensible in home care. In a multiple organization setting, the ordering among stake-

holders is not fixed and is valid only under certain conditions (e.g. when performing

certain actions).

Specify the Order among Stakeholders. We make use of resolution policies to

specify the order among stakeholders. The condition of the ordering rule can compare

the attributes of the action and the policy. The new action set_order has been

introduced to specify the ordering among stakeholders. This action has three

parameters: the two different owners of the policies, and the relational operator

between the owners (gt, lt, eq, unspecified). gt means the first owner ranks higher than

the second, with the other operators having the obvious interpretation.

The example of Figure 4 shows that the warden has higher priority over the tenant

for setting the TV volume at night time (from 23:00 to 7:00).

<conditions>

 < and>

 < condition>

 < parameter>time

 < operator>in

 < value>23:00..07:00

 < condition>

 < parameter>action

 < operator>eq

 < value>device_out(TV, setVolume)

 < action arg1=":warden" arg2=":tenant"

 arg3=”gt”>set_order(arg1,arg2, arg3)

Figure 4. Example of specifying Order among Stakeholders

Multiple orders among stakeholders can be specified under the same conditions. The

relative orders among stakeholders are transitive. That is, if owner A is ranked higher

than owner B and owner B is ranked higher than owner C, then owner A is ranked

higher than owner C. This can help to simplify specification of the ordering.

The stakeholder parameters of the set_order action can also be roles. In the above

example, a policy owner whose role is warden has higher priority than a policy owner

whose role is tenant. Our policy system support roles through policy variables, which

can contain a single value or a list of values.

Applying Order among Stakeholders. When conflicts are detected between policies

of different owners, the resolution action apply_stakeholder can be used. Suppose there

are conflicting policies that want to set the volume of the TV differently. The condition

part of a resolution policy would check whether both their targets are the same TV;

whether both actions are set_volume, and whether the volume levels are different. The

policy preferences would indicate if both policies are positive obligation policies. The

action part of the resolution would use apply_stakeholder to ensure that the warden’s

policy is respected.

5.3 Handling Interactions of Policy Actions over Time

 To handle the policy interactions over time inside the policy system, we need to be

able to detect the conflicts and then resolve the conflicts. According to Moffet’s clas-

sification of policy conflicts, the interactions between a new action and the existing

actions are goal conflicts (or resource conflicts) rather than modality conflicts. These

are action conflicts, not policy conflicts. Detecting conflicts between new actions and

existing running actions needs the policy system to keep a record of all running actions.

To find out whether a new action conflicts with ongoing actions, applica-

tion-specific information is needed. This can be achieved by asking the user to specify

the specific conditions to check. Similarly, resolving conflicts can be achieved by

asking the user to resolve the choice of action manually. Even after an action is stopped

due to conflict how to deal with it later also needs to be specified. In addition, only

certain kinds of actions may suffer from this kind of conflict. For simplicity, we

therefore move the handling of action conflicts from the policy server to the actuators in

our system. In the example given earlier, the alarm system would be an actuator and

would use a priority-based approach to handle actions that conflict over time. A new

alarm with a higher priority would stop an existing alarm with lower priority.

6 Related Work

Policy-based management has been applied in many areas, for example network and

distributed systems management [2], telecommunications [14] [5], pervasive comput-

ing environments [10, 11, and 12], semantic web services [13], and large evolving

enterprises [9].

The present paper has used the taxonomy of policy conflicts in [1] that describes

how policy conflicts can be detected and resolved at definition time or at run time. [6]

reviews policies in distributed systems and proposes using meta-policies to detect and

resolve conflicts in one organization. However, this work does not tackle the problem

of conflicting policies among multiple stakeholders. In addition, the solution in [6] is

mostly for static detection and resolution of policy conflicts. Dunlop et al. have pro-

posed a solution to detect conflicts dynamically using deontic logic, but this tackles

only modality conflicts. [10, 11] propose a solution based on reasoning about the ef-

fects of actions to detect and resolve goal conflicts in pervasive computing environ-

ments. The aim is to guarantee the execution order of actions resulting from a single

trigger. However, this work also does not deal with policy conflicts among multiple

stakeholders.

7 Conclusion

The paper has focused on conflict issues when using policy-based management in

home care systems. Three specialised kinds of conflict have been identified in home

care: multiple stakeholder conflicts, policy conflicts due to dependency among situa-

tions, and conflicts among actions over time. Based on the analysis of these conflicts,

we have proposed a solution to enhance our existing policy system to handle these

conflicts. This has included extensions to the policy language and the policy system.

The enhancements also have implications for other part of the home care system, in-

cluding sensors and actuators. We plan to evaluate the approach through field trials in

actual homes.

References

[1] J. D. Moffett and M. Sloman. Policy Conflict Analysis in Distributed System Management.

Organizational Computing, 4(1):1–22, 1994.

[2] N. Damianou, N. Dulay, E. Lupu and M. Sloman. Ponder: A Language specifying Security

and Management Policies for Distributed Systems, Technical Report, Imperial College,

London, UK, 2000.

[3] F. Wang, L. S. Docherty, K. J. Turner, M. Kolberg and E. H. Magill. Service and Policies for

Care At Home, Proc. Int. Conf. on Pervasive Computing Technologies for Healthcare, pp.

7.1–7.10, Nov 2006.

[4] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry and J. Ireland. Policy

Support for Call Control, Computer Standards and Interfaces, 28(6):635–649, Jun. 2006.

[5] K. J. Turner and L. Blair. Policies and Conflicts in Call Control, Computer Networks,

51(2):496-514, Feb. 2007

[6] E.C. Lupu and M. Sloman. Conflicts in Policy-Based Distributed Systems Management,

IEEE Trans. on Software Engineering, 25(6), 1999.

[7] A. K. Dey, D. Salber and G. D. Abowd. A Context-based Infrastructure for Smart Envi-

ronments. In Proc. 1st Int. Workshop on Managing Interactions in Smart Environments, pp.

114–128, Dublin, Dec. 1999.

[8] M. Perry, A. Dowdall, L. Lines and K. Hone. Multimodal and ubiquitous computing systems:

supporting contextual interaction for older users in the home. IEEE Trans. on IT in Bio-

medicine, 8 (3):258–270, 2004.

[9] N. Dunlop et. al. Dynamic Conflict Detection in Policy-Based Management Systems, Proc.

EDOC ’02, 2002.

[10] C. Shankar, A. Ranganathan and R. Campbell. An ECA-P Policy-based Framework for

Managing Ubiquitous Computing Environments, Proc. 2nd Int. Conf. on Mobile and Ubiq-

uitous Systems, 2005.

[11] C. Shankar and R. Campbell. Ordering Management Actions in Pervasive Systems using

Specification-enhanced Policies, Proc. 4th Int. Conf. on Pervasive Computing and Commu-

nications, Pisa, Mar. 2006.

[12] L. Kagal, T. Finin and A. Joshi, A Policy Language for Pervasive Systems, Proc. 4th Int.

Workshop on Policies for Distributed Systems and Networks, Lake Como, Jun. 2003.

[13] A. Uszok, J. Bradshaw, R. Jeffers, M. Johnson, A.Tate, J. Dalton and S. Aitken. KAoS

Policy Management for Semantic Web Services. Intelligent Systems, 19(4):32–41, 2004.

[14] Special Issue on Feature Interactions in Telecommunications Systems, IEEE Communica-

tions Magazine, 31(8), 1993.

