Feng Wang and Kenneth J. Turner. Policy Conflicts in Home Care Systems,
in Lydie du Bousquet and Jean-Luc Richier (eds.), Proc. 9th Int. Conf.

on Feature Interactions in Software and Communications Systems,

pp. 54-65, I0S Press, Amsterdam, May 2008.

Policy Conflictsin Home Care Systems

Feng Wang and Kenneth J. Turner
Computing Science and Mathematics, University afigg, Stirling, FK9 4LA, UK
fw@cs.stir.ac.uk, kjt@cs.stir.ac.uk

Abstract. Technology to support care at home is a promialteynative to tra-
ditional approaches. However, home care systenmgeptesignificant technical
challenges. For example, it is difficult to makelsisystems flexible, adaptable,
and controllable by users. The authors have creafgdtotype system that uses
policy-based management of home care services li€afétection and resolu-
tion for home care policies have been investigai®d.identify three types of
conflicts in policy-based home care systems: catsfthat result from apparently
separate triggers, conflicts among policies of ipldtstakeholders, and conflicts
resulting from apparently unrelated actions. Weesystically analyse the types
of policy conflicts, and propose solutions to erteaour existing policy language
and policy system to tackle these conflicts. THeaeiced solutions are illustrated
through examples.

Keywords: Policy-based management, policy conflict, home sgstem.

Introduction

Policies have emerged as a promising and morebfeegiternative to features. Among

the benefits of policies, they are much more usemted. However, policies are prone

to conflicts much as features are prone to inteévast This paper examines the issues

of policy conflict in a novel application domairoiine care.

It is predicted that the growing percentage of olgeople will have enormous im-
pact on the demand for care services. This wilttexege pressures on the resources of
existing care services [3]. Increasingly, providoage at home is seen as a promising

alternative to traditional healthcare solutions. lgking use of sensors, home net-

works and communications, older people can proloadgpendent living in their own

homes. Remaining in a familiar environment whiléngetaken care of also improves

their quality of life. Their families and informahrers can also be relieved of constant
worry whether those in care are well.

The hardware to enable home care services, sustrasr technologies and com-
munications, has matured in terms of cost and aviitly. Providing software solu-
tions to deliver home care service, however, remairchallenging task. Most home
care systems have been created iachhocway. The systems are usually hand-crafted
and manually customised to the needs of individoaharios. Because the solutions for
home care services are hard-coded, even simplgebam services requires an on-site
visit by specially trained personnel. They are ¢f@re costly to change.

Proprietary, off-the-shelf telecare products suffem similar problems. The func-
tions of a product are typically fixed in specialrpose devices. Data from these de-
vices cannot easily be accessed, and the devia&sonty with products from the same
company. Domestic health monitoring and home autemare currently very limited.

The major issues in home care delivery are fleikjhibdaptability, customisability
and cost. We have successfully demonstrated tiafpibssible to use a policy-based
system to integrate data from a variety of homesaen Sensor data is used to support a
variety of home automation and home care servige€pnsiderable research remains
to realise the potential of this work and to dentiais its value in supporting care of
older people. One major issue is the detectionrasolution of policy conflicts, which
is the focus of this paper.

Essentially, policies are rules that define theawvébur of a system. A typical policy
consists of a trigger, a condition and an actidmer€ are two basic types of policies:
authorization policies and obligation policies. Battization policies give a set of
subjects the authority to carry out some actiormugpset of target objects; in negative
form, they require subjects to refrain from doing ®bligation policies specify that a
set of subjects is responsible for taking someoastupon the target objects when a
certain trigger event is received and the someitiond are satisfied.

When enforcing the policies, it is possible thatitiple policies may conflict with
each other. We use the following general definitbpolicy conflict two policies are
said to conflict with each other if there is incmtsncy between them. The classifica-
tion of conflicts by Moffet et al. [1] is discusséater.

When applying policy-based management to home ggst=ms, we observe that
certain classes of policy interaction are uniquéte domain:
¢ policy rules of multiple stakeholders may conflict

¢ policy actions resulting from apparently differénigggers may interact according to
changingsituations
e policy actions may conflict over time.

The issues in a policy-based home care systemsafellaws. What types of the
policy interactions should be tackled inside thégyosystem? What type of interac-
tions should be tackled outside the policy systérti®e policy interaction is tackled by
the policy system, how should it be handled?

Based on the analysis of the problems, we propasdugion to tackle the above
issues. Our solution is built on top of our predawrk on the ACENT project [4]. In
order to explain our solution, we will first intrade the previous work onGEENT. The
paper is organized as follows. Section 2 brieflyal#es the policy language for home
care. Section 3 presents how policies are deplapeldenforced inside the home care
system. In section 4, policy conflict issues in leooare systems are identified and
analysed. A solution for resolving these conflistproposed in section 5. Related work
is discussed in section 6. Finally, in section 7d&scribe the current status of the work.

2 Policy Language for Home Care Systems

The policy language for care at home builds onpravious work for call control [4].

To allow use in different application domains, gwdicy language has two parts:

¢ the domain-independent core policy language defimestructure of policies (e.g.
their combinations) and general attributes of pedi¢e.g. metadata)

¢ domain-specific extensions reflect specialisatifmnsach kind of application.

A policy rule consists of three parts: trigger, dibion and action. Although the core
language defines some of these, specific elemeata@mally defined per-domain.
The core policy language is defined in [4], with $pecialization for home care in [3].

A home care policy consists of a set of policyilatties and a set of policy rules. The
attributes of a home care policy include the follogy
¢ id uniquely identifies the policy in the policy store
o descriptionexplains the purpose of the policy in plain text.

e ownerindicates the entity that the policy belongs tondtation similar to email
addresses is used, eegn@housel.address?2.city3.country4

¢ applies_ toidentifies the entities to which a policy appligsg. sensors, people,
virtual entities | computer programs). An emaildikotation is used for entities:

1@movement.kitchen.housel.address?2.city3.counteghs movement sensbin
the kitchen ohousel Omitting ‘1’ means any movement sensor in thishen.
preferencestates how strongly the policy definer feels aliguand represents the
modality of the policy. Examples as@ould should not Internally the value of this
attribute is represented as integer (which maydsitige or negative) .
valid_fromandvalid_to specify the time period during which a policy &lid

profile is used to group the policies. A policy with anpgynprofile is always ap-
plicable, while one with a non-empty profile musttoh the user’s current profile.
enabledstates whether the policy system should consigeliay or not.
changedndicates the last-modified time of a policy.

For home care policy rules, a generic trigdevice_inis used: its arguments indi-

cate the trigger type and the sensor that caus@dtilgger sets environment variables

to reflect the current state of the environmenpoficy condition can make use of these
variables to check whether it is eligible for extsmo. A generic actiomevice_outs
defined to instruct actuators to execute actiofss &ction has arguments to indicate
the actuator, the action to be executed and thenpeters of the action.

In our home care system, a home care serviceugedased application described

by policy rules. An example policy for home careli®wn in Figure 1. Dementia pa-

tients often wander at night, and this worriesrthelatives. The policy in figure 1 states
that, if movement is detected in the bedroom whesriight (10PM—7AM), remind the
patient to go back to bed. The obvious closing tagsomitted in the XML definition.

<policy_rul e>

< trigger argl="bedroom" arg2="movement">
device_in(argl,arg2)

< condition>
< par aret er >time
< oper at or >in
< val ue>22:00:00..07:00:00

< action argl=":bedroom_speaker"

arg2="please go to bed">speak(argl,arg2)

Figure 1. Night-Time Wandering Reminder Policy Example

3 Deployment and Enfor cement of Policies

Figure 2 illustrates how policies are deployed enfbrced in the policy system.
Error! Objects cannot be created from editing field codes.

Figure 2. Policy Deployment and Enforcement in A Home Carst&y

3.1 Policy Deployment

At design time, a policy is defined using editimgls such as a policy wizard. This
policy is then passed to the policy deployment nedstep 1). Since the policy may
conflict with the existing policies in the policyose, it is passed to the static analysis
module to check for conflicts (step 2). The stailysis module retrieves related
policies from the policy store (step 3), perforrmaftict detection analysis, and returns
the result to the policy deployment module (stepf4there is conflict, the user is no-
tified. If there is no conflict, the policy is savén the policy store (step 5).

3.2 Policy Enforcement

The policy enforcement module makes decisions oistwéictions should be executed
and issues them for execution. At run time, a seasads out an event through the
event service (step 1). The event is passed tpdliey enforcement module (step 2).
The policy enforcement module retrieves relevaticigs from the policy store (step
3). For each retrieved policy, the policy enforcetmaodule checks the trigger part and
the condition part of the policy against input ¢rggs and the current environment set-
ting. If the trigger matches and the policy coratis hold, the corresponding policy
action is added to the set of potential actionsceOtie policy enforcement module
finishes checking the relevant policies, there hdla set of potential actions. If there is
more than one action in the set, this is passedetaynamic analysis module for de-
tection and resolution of conflicts (step 4).

Our existing policy system uses resolution poligizsletect and resolve conflicts
among actions. The structure of a resolution paicxery similar to that of an ordinary
policy. The major difference is that in the resmatpolicy, the triggers are the actions
of regular policies rather than ordinary triggesfi sensors. A detailed description of
resolution policies can be found in [5]. The dynaianalysis module retrieves resolu-
tion policies from the policy store (step 5), amplées these to the set of potential ac-
tions to select the most appropriate actions ifatere conflicts. This action is then
passed back to the policy enforcement module @tephe policy enforcement module

sends the actions to the event service (step ®.eMent service acts as a broker,
passing commands to actuators for execution (Step 8
A resolution policy supports two types of resolatiactions: specific actions and
generic actions. For specific actions, a resolypiolicy specifies what to do when there
are conflicting actions. The outcome is not limitedhe set of conflicting actions. For
generic actions, the resolution is chosen from ajba conflicting actions. This relies
on comparing the attributes of conflicting policiB®rrowing from our previous work,
the following generic actions are used in home:care
o apply_newer, apply_oldedecides whether the newer or older policy is chosen
e apply_onechooses some action from the set of potentigbast
e apply_negative, apply_positive, apply_stronger, lgppeaker decides the action
by checking the value of poligyreferences
o apply_inferior, apply_superioruses theapplies_toattribute to decide within one
hierarchy whether the superior’s policy or infetsgpolicy is chosen

4 Policy Conflictsin Home Care Systems

4.1. Detection and Resolution of Policy Conflictsin General

To simplify our analysis, for now we only considepolicy with a single rule. A home
care policy has the following elements: subjecteg trigger, condition, action, owner
and preference. Much as for Pondbttg://ponder2.ngtwe consider two types of
policies: authorisation (A) and obligation (O). Rarthorisation policies, the subject is
authorised to take an action on a target objeat.obtigation policies, the subject is
obliged to take action on the target when receidnggger and the condition is satis-
fied. If we combine the type of policy with the naditly, we get the following policy
modes: positive authorisation (A+), negative ausiaion (A-), positive obligation
(O+), and negative obligation (O-).

Type of Policy Conflicts in Home Care. According to Moffet and Lupu’'s
classification [1] [6], there are two types of mgliconflicts: modality conflicts and goal
conflicts.

Modality conflicts can be detected by looking a¢ tholicy alone. For modality
conflicts, the following attributes (subject, tatgaction) of two policies overlap, but

the mode of the policy contradicts. The other latiteés of the policy may be different,

including trigger, condition and owner. There dneeé possible modality conflicts:

o A+, A-: one policy states that the subject is aded to take some action, but the
other policy prohibits the subject from performithgs action.

o O+, O-: oneolicy states that the subject is obliged to take sonierabdut the other
policy states that the subject is obliged not ke this action.

o A-, O+:onepolicystates that the subject is obliged to take sonierabdut the other
policy states that the subject is not authorisedbtthis.

A+/O- is not a policy conflict, since no actionsué from this combination: the
subject isauthorizedto take some actions, but musfrain from taking these [1] [6].

Goal conflicts need application-specific informatio be detected. Moffet al [1]
identify four types of conflicts: conflicts of impative goals, in particular for re-
sources; conflicts of authority goals, includinghfiict of duty and conflict of interest;
multiple managers; and self-management.

In the home care domain, we consider actuatorbeasatget of policy. A sensor,
person or computer program is considered as aubjgolicy-based management.
Inside the policy system, there will be an ageng&fach such entity to act on its behalf.
Due to lack of computation power on sensors, olicpsystem employs a centralised
server for enforcing policies. This implies thag folicy server acts as an agent for all
subjects of the policy system.

In home care systems, modality conflicts may arnsene owner’s policies due to
overlapping situations. They also may arise betwmeitiple owners’ policies. For
goal conflicts, we are currently particularly irgsted in multiple managers and con-
flicts for resources since many care services apeesented as obligation policies.
These services are triggered by events from sensors
Detection Conflicts: Statically vs. Dynamically. Modality conflicts can be detected at
definition time or at run time. Detection is acheehby comparing the subject, target,
action and preference of two policies. This indésatvhether there are potential
conflicts. For modality conflicts, if the situatismf two policies are exactly the same,
this potential conflict becomes definite; the cantfshould be eliminated at definition
time. If conflict depends on the evaluation of a-time situation, this type of potential
conflict may still need to be detected and resoledin-time.

Detecting goal conflicts needs application-spedififormation. This may use an
explicit definition of conflict situations. It maglso use automatic reasoning about the

effects on goals if the semantics of these is plg@pecified. Our policy system sup-
ports the specification of conflicting situationg the user.

As seen in section 3, our policy system supporth Btatic analysis and dynamic
analysis. Dynamic analysis is performed when ay&igrom sensors is received and
processed. It requires resources and time, andshoay down the decision making
process of the policy system. Comparing with dyraamalysis, static analysis is more
desirable as it reduces the burden on dynamicicarflowever, not all conflicts can be
detected by static analysis, especially potentaflicts.

Resolving Conflicts. Once a conflict is detected, conflicting policiesed to be
resolved. This can be by achieved by notifyinguber and asking for a decision, or it
can be done automatically.

For automated resolution, our policy system supplooth specific actions and ge-
neric actions. For policies that belong to a sirgl@er, several policy attributes can be
used to choose the resolution action. For examntplke, policy language supports
choosing an action with the strongest preferenoe pBlicies that belong to different
users in one organization, the ‘distance’ betwegply and the managed object can
be used to choose the resolution action. In odcyptdnguage, this distance is derived
from the applies_toattribute. Suppose one policy applies@as.stir.ac.ukand the
other policy applies tgohn@cs.stir.ac.ukAn apply_superiorresolution action will
choose the policy which applies@cs.stir.ac.ulas the higher domain in the hierarchy.

4.2 Special Issuesfor Policy Conflictsin Home Care

In home care systems, beside the modality conflidsussed above we observe the
following three special types of conflicts betweaolicy actions. How to deal with
these conflicts is the focus of this paper. Shdh&linteraction be tackled inside the
policy system, or should it be dealt with outsitle policy system (e.g. by the actua-
tors)? If the interaction is tackled by the polégrver, how can we enhance our existing
policy system to handle it? If the interactionaskled outside the policy server, what
functionalities are required from the external sps?

Dependency among Situations. The actions resulting from different situationaym
conflict with each other, and situations may hawerdependencies. The situation of
obligation is common in a home setting. These 8dna rely on context information.
As Dey points out [7], there are different levefscontext information. High-level
situations can be inferred from low-level sensdaadand the trigger from one sensor
can be used to infer multiple situations. As ameple, a ‘door open’ sensor can detect
the situation of the door being left open. Suppasmlicy states that when the front
door is left open, a reminder should be given te tasident to close the door.
Combining the door sensor and the sensor in the kbo&, a new situation can be
detected: the door has been broken open. Suppofigeapolicy states that, when the
door is broken open, the resident should be adwssdin his/her room to call for help.
When a door is broken into, which action shoulddien [8]?

In the above case, if we specify the two situat@nsvo separate triggers, there will
be no policy conflict and two actions will be exes It does not make sense to remind
the user to lock the door, while at the same titatrgy that there has been a break-in.

In this example, we can see that situations in hoame can have logic relationships
between them. One situation may be implied by arothr two situations may be im-
plied by triggers originating from the same sen8asides logical relationships, there
are other relationships such as containment. Fample, one policy reacts to move-
ment in the bedroom, while another reacts to moveimeany room of the house. The
situation of the second policy contains that offitet.

A policy system needs to be able to detect andvesmwlicy conflicts due to de-
pendent situations. The issue is how to specifytriibgers and conditions of the poli-
cies properly so that the conflicts are detected.

Multiple Stakeholders. In home care systems, policies may be defined biyipte.
organizations (e.g. a social work department, gesyr a clinic). Their policies may
conflict with each other. How can the conflictsnadiltiple stakeholders be handled?

In fact, conflicts among multiple stakeholders ao¢ much different from the case
of a single stakeholder. The difference is in reSoh of the conflicts. If the resolution
action is chosen from one of the conflicting actiothealing with multiple stakeholders
is an issue. When policies are defined by diffesrganizations, there is no hierarchy
among the stakeholders. Some solution is needetbdme how one stakeholder’s
policies should be evaluated compared to otheektaklers’ policies.

I nteractions between Actions over Time. The policy actions in a home care system
take time to complete. It is therefore possiblerfew actions to conflict with ongoing
actions. Suppose a medical reminder service cah alpatient to take medicine at
certain times. This system will remind the patiagtin if there is no response to the
first reminder. While the medical reminder is rurmgia more urgent situation such as a
fire may be detected in the house. Following tme &larm policy, the system will
remind the user to leave the house immediately.

How to deal with these interactions in a policydmhsystem? A fundamental ques-
tion is whether they should be dealt within theiggosystem or not.

5 Enhancement to the Home Care Policy Systems

5.1 Tackling Dependencies among Situations

A situation is specified jointly by the trigger attie condition of a policy. To tackle
dependencies among situations, we introduce étisitudependency graph (see figure
4). The nodes on the left are the sensors. Thesniod&e middle and on the right are
situation nodes. A situation node receives inpudsfthe nodes on its left and evalu-
ates its function to get a new value. If the vaidfia situation node has changed, it will
send the update to other situation nodes that depant. Each situation node also
supports queries for its current value. In figursitlation B depends on sensor A, thus
there is a directional link from A to B.

For a policy system to detect conflicts among ddpahsituations, the trigger part
of a policy must specify all the sensors that aeduto derive a situation. In the de-
pendency graph, these sensors are the root nottes sifuation node. In the condition
part of the policy, an environment variable witk thame of the situation node is used.
This environment variable is set up by the poligstem to keep the most current value
of the situation node. In figure 4 for exampleaipolicy requires situation F, then the
trigger part of the policy is the list {A, C, E}.HE parameter of the condition is F.

lw)
v

v

A
\4

Figure 3. Situation Dependency Graph

The dependency graph is designed and maintaingldebservice designer. If there
are new sensors or new software module installedetect new situations, the de-
pendency graph is updated to reflect the changeis. May affect the triggers and
conditions available to the policy definer whemagsihe policy editing tool.

The example of ‘door open’ vs. ‘door broken intdllvehow how this works. The
‘door open’ reminder policy has the following elemts

appl i es_t o:[doorl]

trigger: [doorl:]

condi ti on: door_open eq true

act i on:remind(reminder_bedroom, door left open)
preference: 3

The ‘door broken into’ policy has the following elents:

appl i es_t o: [doorl, lock2]

tri gger : [doorl:open, lock2:broken]

condi ti on: broken_into eq true

act i on:remind(reminder_bedroom, door broken into)
pref erence: 5

In the above policies, the trigger of the firstipp must originate from a specific
door sensor, but does not require a particular tfpteigger as this is implied by the
condition. The trigger of the second policy origesfromdoorl with typeopen and
from lock2 with typebroken When the door is broken into, the policy servél ng-
ceive triggers from the door sensor and door lasiser at the same time. It will re-
trieve policies that apply to any of these sensBisce the triggers and conditions of

both policies are satisfied, there will be two anti. These two actions compete for the
same reminder service, so there are conflictsulsgstem, these conditions are han-
dled by part of a resolution policy. Other partstité resolution policy decide which
action to choose. For example, a policy preferenag be used in the generic action
apply_strongerin this case, the action from the second polioyl be executed.

5.2 Resolving Conflicts of Multiple Stakeholders

Detecting conflicts among multiple stakeholderthessame as for a single stakeholder
except that the owners of the policies differ. Wherefore add a new generic resolu-
tion action:apply_stakeholderThis relies on the partial ordering among stakadns

to choose one action among the conflicting onesralatg to a predefined order among
stakeholders. We believe that a total orderingtakeholders in all situations is not
sensible in home care. In a multiple organizatiettirsg, the ordering among stake-
holders is not fixed and is valid only under certeonditions (e.g. when performing
certain actions).

Specify the Order among Stakeholders. We make use of resolution policies to
specify the order among stakeholders. The conddfdhe ordering rule can compare
the attributes of the action and the policy. Thevnection set_order has been
introduced to specify the ordering among stakehslddhis action has three
parameters: the two different owners of the paddiciand the relational operator
between the ownergf It, eq, unspecified)gt means the first owner ranks higher than
the second, with the other operators having théooisvinterpretation.
The example of Figure 4 shows that the warden kggseh priority over the tenant
for setting the TV volume at night time (from 23:@07:00).
<condi tions>
< and>
< condi tion>
< paramnet er >time
< operator=>in
< val ue>23:00..07:00
< condi tion>
< paranet er >action
< operator>eq
< val ue>device_out(TV, setVolume)

< acti on argl=":warden" arg2=":tenant"
arg3="gt">set_order(argl,arg2, arg3)

Figure 4. Example of specifying Order among Stakeholders

Multiple orders among stakeholders can be spedifieter the same conditions. The
relative orders among stakeholders are transifiiat is, if owner A is ranked higher
than owner B and owner B is ranked higher than ov@ethen owner A is ranked
higher than owner C. This can help to simplify sfiestion of the ordering.

The stakeholder parameters of #et_orderaction can also be roles. In the above
example, a policy owner whose rolenardenhas higher priority than a policy owner
whose role igenant Our policy system support roles through policyiaales, which
can contain a single value or a list of values.

Applying Order among Stakeholders. When conflicts are detected between policies
of different owners, the resolution actiapply_stakeholdetan be used. Suppose there
are conflicting policies that want to set the votuaf the TV differently. The condition
part of a resolution policy would check whethertbtiteir targets are the same TV,
whether both actions aset_volumeand whether the volume levels are different. The
policy preferences would indicate if both polica® positive obligation policies. The
action part of the resolution would uapply_stakeholdeto ensure that the warden'’s
policy is respected.

5.3 Handling Interactions of Policy Actions over Time

To handle the policy interactions over time inside policy system, we need to be
able to detect the conflicts and then resolve thdlicts. According to Moffet's clas-
sification of policy conflicts, the interactionstia@en a new action and the existing
actions are goal conflicts (or resource conflicegher than modality conflicts. These
are action conflicts, not policy conflicts. Detegticonflicts between new actions and
existing running actions needs the policy systekeg&p a record of all running actions.

To find out whether a new action conflicts with oy actions, applica-
tion-specific information is needed. This can bkiewed by asking the user to specify
the specific conditions to check. Similarly, resoty conflicts can be achieved by
asking the user to resolve the choice of actionuabiym Even after an action is stopped
due to conflict how to deal with it later also nedd be specified. In addition, only
certain kinds of actions may suffer from this kiofl conflict. For simplicity, we

therefore move the handling of action conflictafirthe policy server to the actuators in
our system. In the example given earlier, the alsystem would be an actuator and
would use a priority-based approach to handle astibat conflict over time. A new
alarm with a higher priority would stop an existialgrm with lower priority.

6 Reated Work

Policy-based management has been applied in ma&ag,afor example network and
distributed systems management [2], telecommuiicatj14] [5], pervasive comput-
ing environments [10, 11, and 12], semantic welvises [13], and large evolving
enterprises [9].

The present paper has used the taxonomy of potioflicts in [1] that describes
how policy conflicts can be detected and resolueadkeéinition time or at run time. [6]
reviews policies in distributed systems and propastng meta-policies to detect and
resolve conflicts in one organization. Howevers tiwork does not tackle the problem
of conflicting policies among multiple stakeholdelrs addition, the solution in [6] is
mostly for static detection and resolution of pplaonflicts. Dunlopet al. have pro-
posed a solution to detect conflicts dynamicallingsdeontic logic, but this tackles
only modality conflicts. [10, 11] propose a solutibased on reasoning about the ef-
fects of actions to detect and resolve goal casflic pervasive computing environ-
ments. The aim is to guarantee the execution arflactions resulting from a single
trigger. However, this work also does not deal wathicy conflicts among multiple
stakeholders.

7 Conclusion

The paper has focused on conflict issues when usiligy-based management in
home care systems. Three specialised kinds oficohthive been identified in home
care: multiple stakeholder conflicts, policy coafffi due to dependency among situa-
tions, and conflicts among actions over time. Basedhe analysis of these conflicts,
we have proposed a solution to enhance our exigtohigy system to handle these
conflicts. This has included extensions to thegylanguage and the policy system.
The enhancements also have implications for otherqf the home care system, in-

cluding sensors and actuators. We plan to evathatapproach through field trials in
actual homes.

References

[1] J. D. Moffett and M. Sloman. Policy Conflict Atysis in Distributed System Management.
Organizational Computing4(1):1-22, 1994.

[2] N. Damianou, N. Dulay, E. Lupu and M. SlomanBer: A Language specifying Security
and Management Policies for Distributed Systemsghmieal Report, Imperial College,
London, UK, 2000.

[3] F. Wang, L. S. Docherty, K. J. Turner, M. Kotgeand E. H. Magill. Service and Policies for
Care At HomepProc. Int. Conf. on Pervasive Computing Technoleda Healthcare pp.
7.1-7.10, Nov 2006.

[4] K. J. Turner, S. Reiff-Marganiec, L. Blair, Bang, T. Gray, P. Perry and J. Ireland. Policy
Support for Call ControlComputer Standards and Interfac@8(6):635-649, Jun. 2006.

[5] K. J. Turner and L. Blair. Policies and Contficin Call Control,Computer Networks
51(2):496-514, Feb. 2007

[6] E.C. Lupu and M. Sloman. Conflicts in Policy<al Distributed Systems Management,
IEEE Trans. on Software Engineerirzb(6), 1999.

[7] A. K. Dey, D. Salber and G. D. Abowd. A Contéxdsed Infrastructure for Smart Envi-
ronments. IrProc. 1st Int. Workshop on Managing InteractionsSimart Environmentpp.
114-128, Dublin, Dec. 1999.

[8] M. Perry, A. Dowdall, L. Lines and K. Hone. Mirthodal and ubiquitous computing systems:
supporting contextual interaction for older userstie homelEEE Trans. on IT in Bio-
medicine 8 (3):258-270, 2004.

[9] N. Dunlopet. al Dynamic Conflict Detection in Policy-Based Managst SystemsProc.
EDOC '02, 2002.

[10] C. Shankar, A. Ranganathan and R. Campbell E@#A-P Policy-based Framework for
Managing Ubiquitous Computing Environmeri®pc. 2nd Int. Conf. on Mobile and Ubig-
uitous System2005.

[11] C. Shankar and R. Campbell. Ordering Managéretions in Pervasive Systems using
Specification-enhanced Policid®roc. 4th Int. Conf. on Pervasive Computing and €am
nications Pisa, Mar. 2006.

[12] L. Kagal, T. Finin and A. Joshi, A Policy Lamage for Pervasive Systeni&oc. 4th Int.
Workshop on Policies for Distributed Systems antivibikks Lake Como, Jun. 2003.

[13] A. Uszok, J. Bradshaw, R. Jeffers, M. Johnsdmate, J. Dalton and S. Aitken. KAoS
Policy Management for Semantic Web Servitetlligent Systemd.9(4):32-41, 2004.

[14] Special Issue on Feature Interactions in Tatenunications SystemEEE Communica-
tions Magazine31(8), 1993.

