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Abstract 
 

Gilthead seabream juveniles were fed on either a fish oil (FO)-containing diet or a diet 

containing a 50:50 blend of FO and Echium oil (EO) to determine the effect of EO on growth, 

plasma parameters and tissue lipid compositions. After 4 months of feeding, there was a 

significant increase of 18:2n-6 and a reduction of around 25% of 20:5n-3 in flesh of the fish 

fed the EO diet. At this point, half of the fish fed EO were returned to the FO diet as a third 

treatment (EF) and the trial continued with the three groups for a further 3 months. At the end 

of the experiment, food intake, survival, growth and plasma parameters were not affected by 

the inclusion of dietary EO. However, HSI, total lipid and triacylglycerol contents of muscle 

decreased in fish fed the EO diet. Feeding the EO diet resulted in significant increments of 

potentially health-promoting fatty acids such as 18:3n-6, 18:4n-3 and 20:3n-6 but reduced n-3 

highly unsaturated fatty acids, particularly 20:5n-3. When EO-fed fish were returned to the 

FO diet, tissue lipid contents and HSI tended to increase, but 18:2n-6 and 20:5n-3 levels were 

not fully restored to the levels of fish fed the FO diet for the entire trial. Furthermore, the fatty 

acids present in EO, which may promote beneficial health effects, were reduced.  
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1. Introduction 

Omega-3 (n-3) highly unsaturated fatty acids (HUFA) are important dietary nutrients for 

mammals including humans (Simopoulos, 2000), and fish are the major dietary source of 

these physiologically essential fatty acids (Ackman, 1980; Sargent and Tacon, 1999). In the 

course of just a few decades, fish farming has developed into a highly productive and efficient 

industry for the production of animal protein and oil for human consumption (FAO, 2004). 

Diets for the major carnivorous finfish species farmed in Europe have traditionally been based 

on fish meal and fish oil (FO) (Sargent and Tacon, 1999; Tacon, 2004). The development of 

oil-rich high-energy feeds to obtain increased productivity and economic sustainability of fish 

farming, together with the general growth of the aquaculture industry has led to a significant 

proportion of global FO production being used for fish feed. In fact, 100% of the world´s total 

FO production is estimated to be required for feed production by the year 2010 (New, 1999). 

Moreover, “El Niño” phenomena clearly demonstrated the impact a shortage of FO can have 

on raw material prices and thus on feed prices and overall farming economy (Sargent and 

Tacon, 1999). As a consequence, the sustainable development of aquaculture requires dietary 

FO to be replaced, with vegetable oils (VO) as the primary alternatives (Sargent et al., 2002). 

Supplies of VOs are around 100 times higher than FO (Bimbo, 1990), and production 

continues to increase, and their prices remain constant. Furthermore, using FO can produce 

accumulation of toxic contaminants including dioxins and PCBs in the flesh and so fish fed 

with VOs considerably reduced levels of contaminants (Bell et al., 2005; Drew et al., 2007).  

Gilthead seabream, Sparus aurata L., is the most important marine fish species in 

Mediterranean and Canarian aquaculture. This species can generally be grown well on diets in 

which the FO has been partially replaced with VO (Montero et al., 2003; Izquierdo et al., 

2005). However, although incorporation of VO in fish diets has minimal effects on fish 

growth it significantly influences the nutritional quality of flesh in salmonids (Sargent et al., 
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2002) as well as in marine fish including gilthead seabream (Montero et al., 2005), seabass 

(Montero et al., 2005) and Atlantic cod (Bell et al., 2006). The modification of flesh when 

feeding marine fish with VO is reflected in increased tissue total lipids (Kalogeropulos et al., 

1992; Menoyo et al., 2004) and, particularly, C18 polyunsaturated fatty acids (PUFA) such as 

linoleic acid (LA; 18:2n-6) and linolenic acid (LNA; 18:3n-3) as well as reduced levels of the 

n-3 HUFA, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids 

(Sargent et al., 2002), which potentially compromise its nutritional quality for consumers 

(Bell et al., 2001; Sargent et al., 2002). Nowadays, the Western diet contains far more n-6 

than n-3 fatty acids, and an excess of 18:2n-6 has been associated with neurodegenerative and 

cardiovascular diseases and some cancers (Okuyuma et al., 1997; Horia and Watkins, 2005). 

The changes in the fatty acid profile of flesh are partly due to the inability of marine fish to 

convert 18:2n-6 and 18:3n-3 from VO to arachidonic acid (ARA; 20:4n-6) and EPA/DHA, 

respectively, at a physiologically significant rate (Sargent et al., 2002). Therefore, the HUFA 

are essential fatty acids (EFA) for marine fish and are particularly important, not only as 

structural components of cell membranes, but also as precursors of eicosanoids (prostaglandins, 

leukotrienes etc.), which are involved in many physiological processes, including homeostasis, 

osmoregulation, immune and inflammatory responses and reproduction (Bell et al., 1994, 1997). 

Therefore, replacement of FO is only possible when HUFA are present in the diet at sufficient 

quantities to meet the EFA requirements of the fish. As a consequence, diets formulated with 

VO substitutes should avoid excessive 18:2n-6 and retain sufficient levels of HUFA, and 

maximize any potential for conversion of 18:3n-3 to 20:5n-3 and 22:6n-3. A further strategy 

to minimise the negative effects of deposition of VO fatty acids in flesh, and to produce fish 

fillets with a high content of n-3 HUFA, is to utilize a “finishing” period, where fish are 

returned to fish oil diets to promote recovery of the diminished n-3 HUFA and reduce the 

18:2n-6 accumulated in flesh.  
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In the Echium genus (Boraginaceae), seed oils are relatively rich in n-3 fatty acid such 

as 18:3n-3 and 18:4n-3 (stearidonic acid, SDA) and n-6 fatty acids such as 18:3n-6 (γ-

linolenic acid, GLA), with only moderate levels of 18:2n-6 compared to other VOs (Guil-

Guerrero et al., 2000a,b). Thus, Echium oil (EO) has an extremely interesting profile since the 

unusual fatty acids SDA and GLA have a growing pharmacological interest based on their 

competitive and inhibitory effects in the production of proinflammatory eicosanoids derived 

from ARA (Sayanova and Napier, 2004). Specifically, the C20 elongation products of SDA 

and GLA, 20:4n-3 and 20:3n-6 respectively, compete with ARA in the synthesis of 

eicosanoids and reduce production of eicosanoids from ARA (Weber, 1990; Ghioni et al., 

2002). They also generate their own eicosanoids which, together with eicosanoids produced 

from EPA, play important roles in the regulation of many physiological and immunological 

body processes (Balfry and Higgs, 2001), being particularly produced in response to stressful 

situations (Sargent et al., 1999). Recent studies have shown inhibition of ARA prostaglandin 

production in fish fed with EO (Bell et al., 2006; Villalta et al., 2007). The high levels SDA 

and GLA, compared to LNA and LA, could facilitate their conversion into n-3 and n-6 

HUFA, as their conversion does not require the first, rate-limiting, Δ6-desaturation step, 

which may also be advantageous.  

The present study aims to determine if up to half of the n-3 HUFA currently used in feeds 

for gilthead seabream could be replaced by the n-3 and n-6 fatty acids present in EO, without 

significantly compromising the health and growth performance of the fish, or its body 

composition and health promoting characteristics. To this purpose, fish survival, growth, plasma 

parameters and lipid and fatty acid composition of muscle and liver were determined in gilthead 

seabream fed either a diet formulated with FO or a diet in which 50% of the FO was substituted 

with EO. 
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2. Material and methods 

2.1. Animal and diets 

A feeding experiment was conducted using gilthead seabream (Sparus aurata L.) 

juveniles obtained from a local fish farm (Cedra S.L.L.) and maintained for seven months at 

the Centro Oceanográfico de Canarias (Instituto Español de Oceanografía, Tenerife, Spain). 

Fish with an initial average weight of 265.05 ± 49.75 g were divided into six 500L circular 

tanks with 14 fish per tank, and reared under constantly flowing seawater. The fish were 

subjected to natural photoperiod and water temperature which ranged throughout the 

experimental period between 19.8 and 24.8°C. After a 4 week acclimatization period, during 

which all the fish were fed an  extruded commercial diet (Aqualife 17, Biomar S.A., France) 

formulated with FO, fish from three of the tanks were changed to an EO diet, a pelletized 

experimental diet containing 50% FO and 50% EO, manufactured by the Institute of 

Aquaculture, Stirling University (Scotland, U.K.). The EO was purchased from Goerlich 

Pharma (Spain) and produced by cold pressing of seeds from both Echium plantagineum and 

Echium vulgare. Proximate compositions, lipid class and fatty acid profiles of the diets, and 

the fatty acid profile of EO are shown in Table 1. 

Fish were fed twice a day to apparent satiation at around 2% of their biomass. Mortality was 

registered daily. Every four weeks the fish were individually measured for weight and length 

after being anesthetized with 1 ml of chlorobutanol in ethanol (300g chlorobutanol:1l ethanol 

96º) per litre seawater.  

 

2.2 Sampling 

After 4 months of feeding, 12 fish per dietary treatment, were randomly collected and 

anesthetized and blood obtained from the caudal vessel with heparinized syringes. The fish 

were then immediately killed by a blow to the head and liver (n=4) and muscle (n=12) 
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samples taken, frozen in liquid nitrogen and stored at -80 ºC prior to lipid and fatty acid 

analyses. The remaining 8 liver samples were immediately subjected to digestion with 

collagenase and part of other metabolism assays to be published. The livers were previously 

weighed and the hepatosomatic index established using the following formula: HSI = liver 

weight∗100/body weight. Half of the EO fish were then transferred to other tanks and 

returned to the FO diet and the experiment continued with the three dietary treatments for a 

further 3 months. This new treatment group was called EF (EO-FO). At the end of the 

experimental period (7 months in total), more individuals from each dietary treatment group 

were anesthetized and subsequently killed to collect the same samples described for 4 months. 

Fish total weight and length were also registered. The entire experiment was conducted in 

accordance with Spanish law 223/1988 (B.O.E. 18th March) for protection of experimental 

animals, in agreement with European law 89/609/CE. 

 

2.3. Plasma parameters 

After extraction, blood was centrifuged for 5 min at 3500 rpm and 4ºC in a 

microcentrifuge and the plasma (n=6) collected for biochemical analysis by using standard 

veterinarian clinic assay kits. The parameters analyzed were: Cholesterol (mmol l-1), 

BioSystems (cholesterol oxidase/peroxidase); Triglycerides (mmol l-1), BioSystems (glycerol 

phosphate oxidase/peroxidase); Glutamic Oxaloacetic Transaminase-Aspartate Transaminase, 

GOT-AST (U l-1 37ºC), BioSystems (kinetic IFCC); Glutamic Pyruvic Transaminase-Alanine 

Aminotransferase, GPT-ALT (U l-1 37ºC), BioSystems (kinetic IFCC); Alkaline phosphatase, 

ALP (U l-1 37ºC), BioSystems (diethanolamine buffer); Cholinesterase (U l-1 37ºC), 

BioSystems (butiryltiocholine); Lipase (U l-1 37ºC), Germon (colorimetric/metilresorufin); 

Proteins (g l-1), BioSystems (Biuret); Glucose (mmol l-1), BioSystems (glucose 
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oxidase/peroxidase); Amylase (U l-1 37ºC), BioSystems (kinetic IFCC alpha amylase-EPS) 

and Cortisol (ng ml-1), bioMerieux (E.L.F.A.).  

 

2.4. Analytical methods  

Moisture was determined by thermal drying of samples in an oven at 110ºC until 

constant weight, according to the Official Method of Analysis of the Association of Official 

Analytical Chemists (A.O.A.C., 1990). Crude protein of diets was obtained by combustion 

using the Kjeldhal method (A.O.A.C., 1990). Ash content (percentage of dry weight) of the 

diets was determined by dry ashing in porcelain crucibles in a muffle furnace at 450ºC 

overnight, with a previous progressive increment of temperature from 200 to 450ºC in three 

hours according to A.O.A.C. (1990). 

Total lipids were extracted from liver, flesh and diets by homogenization in 

chloroform/methanol (2:1, v/v) containing 0.01 % butylated hydroxytoluene (BHT) as 

antioxidant. The organic solvent was evaporated under a stream of nitrogen and the lipid 

content determined gravimetrically (Christie, 1982). The lipid extract was stored in 

chloroform/methanol (2:1) with BHT as antioxidant, under a N2 atmosphere at -20º C. Diets 

were hydrated overnight with 0.5 ml of distilled water per 100 to 200 mg sample, prior to 

their lipid extraction.   

Lipid class composition was determined by high performance thin-layer 

chromatography (HPTLC). Approximately 30 µg of lipid was applied as a 2 mm streak and 

the plate developed to one-half distance with methyl acetate/isopropanol/chloroform/ 

methanol/0.25% aqueous KCl (5:5:5:2:1.8, by vol.), to separate polar lipid classes, and then 

fully developed with isohexane/diethyl ether/acetic acid (22.5:2.5:0.25, by vol.), for the 

neutral lipid separation. Lipid classes were visualized by charring at 160 ºC for 15 min after 

spraying with 3% (w/v) aqueous cupric acetate containing 8% (v/v) phosphoric acid, and 
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quantified by densitometry using a Dual-wavelength flying spot scanner CS-9001PC (Olsen 

and Henderson, 1989). The identities of individual lipid classes were confirmed by 

comparison with standards and to a well characterized cod roe sample.  

To determine the fatty acid profiles, total lipids were subjected to acid-catalyzed 

transmethylation for 16 h at 50 ºC, using 1 ml of toluene and 2 ml of 1% sulfuric acid (v/v) in 

methanol. The resultant fatty acid methyl esters (FAME) were purified by thin layer 

chromatography (TLC), and visualized under spraying with 1% iodine in chloroform 

(Christie, 1982). FAME were separated and quantified using a Shimadzu GC-14A gas 

chromatograph equipped with a flame ionization detector (250 ºC) and a fused silica capillary 

column, Supelcowax TM 10 (30 m x 0.32 mm I.D.). Helium was used as carrier gas and 

samples were applied by on-column injection at an initial temperature of 50ºC. Oven 

temperature was programmed to rise from 60 to 150 ºC at a rate of 39 ºC min-1, and then to a 

final temperature of 225 ºC at 2.5 ºC min-1, which was maintained for 14 min. Individual 

FAME were identified by reference to authentic standards (PUFA nº3)and to a well-

characterized fish oil. Prior to transmethylation, heneicosanoic acid (21:0) was added to the 

lipid fractions as an internal standard. The results were expressed as milligrams per gram of 

tissue dry weight (mg g-1 DWB) for total fatty acid contents and as weight percentage of total 

lipid for individual fatty acids. 

 

2.5. Chemical and reagents 

BHT, potassium chloride, potassium bicarbonate were supplied by Sigma (St. Louis, 

MO). TLC (20 x 20 cm, Ø 0.25 mm) and HPTLC (10 x 10 cm, Ø 0.15 mm) plates, precoated 

with silica gel (without fluorescent indicator) were purchased from Machery-Nagel (Düren, 

Germany). Fish oil standard (PUFA Nº3) was supplied by SUPELCO (Supelco PARK, 
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Bellefonte, USA). All organic solvents used were of reagent grade and were purchased from 

Panreac (Barcelona, Spain). 

 

2.6. Statistical analysis 

Results are presented as means ± S.D. The data were checked for nomal distribution by 

the one-sample Kolmogorov-Smirnoff test, as well as, for homogeneity of the variances with 

the Levene test and, when necessary, arcsine transformation was applied. Effect of treatment 

was carried out using the Student t-test (2 variables) or one-way ANOVA (3 variables) 

followed by a post-hoc Tukey's multiple comparison test. When homogeneity of the variances 

was not achieved, data were subjected to the Kruskall–Wallis non-parametric test, followed 

by the non-parametric multiple comparison test Games-Howell. In all statistical tests used, P 

< 0.05 was considered statistically different. The statistical analysis was performed by using 

the SPSS package (versions 12.0 and 14.0). 

 

3. Results 

Diet composition 

As shown in Table 1, the proximate compositions of the two experimental diets was 

very similar with protein ranging from 41.6 to 43.4% and total lipid values close to 21% 

(DWB). As expected, diets differed in most fatty acid groups. Total saturated fatty acids of 

the FO diet were higher than that of the EO diet, mainly due to 16:0. Except for 16:1, 

individual monounsaturated fatty acids were higher in the EO diet, which also supplied an 

amount of n-6 fatty acids three fold higher than that of the FO diet. In this sense, 18:2n-6 and 

18:3n-6 were particularly abundant in the EO diet. Total n-3 fatty acids were similar in the 

two diets, but EPA and DHA were 2-3 fold lower in the EO diet compared to the FO diet 

whereas 18:4n-3 and, especially, 18:3n-3, were  greatly increased (Table 1).  
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Fish food intake, growth and survival 

Fish food intake was of around 2% of their biomass per day and quite similar for all 

diets. No significant differences were observed in fish final total weight or length among 

dietary treatments, with values of 447.5±74.5 g and 27.8±1.8 cm for FO-fed fish, 432.7±54.2 

g and 27.6±1.2 cm for EO-fed fish and 453.4±38.5 g and 27.65±0.53 cm for EF diet (Fig. 2). 

Mortality over the experimental period was less than 1% for all treatments. 

 

Plasma parameters  

Some plasma parameters, including the activities of the GPT, ALP and cholinesterase 

enzymes, were reduced in seabream fed the EO diet compared to fish fed the FO diet after 4 

months of feeding, although these differences were no longer observed after 7 months of 

feeding (Table 2). 

 

HSI and lipid profiles 

After 4 months of feeding, the hepatosomatic index (HSI) of fish fed the EO diet, was 

slightly lower than that of fish fed the FO diet. However, these differences were not 

statistically significant due to the high variability in the data. Nevertheless, after 7 months of 

feeding, the HSI from EO-fed fish was significantly lower than that of the FO-fed fish, 

whereas in EF (washout) fish the HSI was restored to the value in the FO fish (Table 4).  

Total lipid levels of muscle significantly decreased over the course of feeding for fish 

fed the EO diet. In liver lipids also appeared to decrease although the differences were not 

statistically significant (Tables 3 and 4). After feeding EO for 4 months muscle lipid class 

composition was already significantly affected with a fall of total neutral lipid. After 7 

months, total neutral lipids, primarily triacylglycerols were also reduced in fish fed the EO 

diet compared to fish fed the FO diet (Table 3). With the washout period this differences 



  1
2 

tended to reduce but not completely and they continued being different from the FO group. 

Liver lipids showed a similar trend to that in muscle with trend triacylglycerols decreasing, 

and phospholipids, particularly phosphatidylcholine, increasing over the course of the feeding 

trial in fish fed the EO diet compared to fish fed the FO diet, although these effects were not 

significant due to the high variability in the data (Table 4).  

After 4 months, muscle and liver fatty acid profiles clearly reflected those of the diets 

(Table 5). Fish fed the EO diet showed significantly increased proportions of 18:2n-6, 18:3n-6 

and 20:3n-6 and, as a result, total n-6 fatty acids also increased. Furthermore, n-3 HUFA 

specifically EPA, and n-3/n-6 ratio were reduced in tissue lipids in fish fed the EO diet.  

Fatty acid compositions of muscle and liver at the end of the trial (7 months) are shown 

in Tables 6 and 7 respectively. In both muscle and liver, saturated (mainly 16:0) and 

monounsaturated fatty acids decreased in fish fed the EO diet compared to fish fed the FO 

diet, while the n-6 fatty acids showed the opposite trend, specially de C18 fatty acids. Total n-

3 fatty acids significantly increased in liver, and slightly in muscle, of fish fed the EO diet 

compared with fish fed the FO diet, but this was due to the C18 fatty acids that were 

significantly higher. No significant differences were found in total n-3 HUFA in muscle, with 

the DHA level apparently being unaffected although EPA and 22:5n-3 were significantly 

reduced. In liver the DHA only slighty decreased but n-3 HUFA, EPA and 22:5n-3 were 

significantly reduced. Specifically comparing the DHA values in muscle from fish fed FO and 

EO for 4 and 7 months, an interesting difference can be observed (17.5% and 15.1% in FO 

and EO, respectively, at 4 months vs 13.2% and 13.1% at 7 months). Clearly, DHA decreases 

in muscle between 4 and 7 months even in fish fed FO, presumably related to the increase in 

flesh fat content although why DHA should decrease in relative terms is unclear. However, 

taking into account the higher fat content in older fish, combined with the fact that the lower 

fat content in EO fish compared to FO fish is also more pronounced at 7 months, the level of 
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DHA expressed in absolute terms was significantly lower (p<0.05) in EO fish (4.98±0.91 mg 

g-1 DWB, FO; vs 3.17±1.04 mg g-1 DWB, EO), although EPA and 22:5n-3 were much more 

susceptible to decrease than DHA (p<0.01). As a result of EPA reduction, the DHA/EPA ratio 

was significantly higher in fish fed the EO diet compared to fish fed the FO diet. Similarly, as 

n-6 fatty acids were increased 2-fold in fish fed the EO diet compared to fish fed the FO diet, 

the n-3/n-6 ratio decreased by 50% and the AA/EPA ratio increased in fish fed EO. 

Importantly, 20:3n-3 and 20:3n-6 appeared in the tissues of fish fed the EO diet despite these 

fatty acids being absent from the EO diet (Table 1). Furthermore these increments were 

always significant except for 20:3n-3 in muscle of fish fed for 4 month. After the washout 

period (EF group), the fatty acid composition of muscle was partially restored to the values 

observed with the FO group (Table 6). Specifically, over 75% of the effect of EO feeding was 

abolished with 18:3n-6 and 18:3n-3, whereas for 16:1, 18:2n-6 and 20:5n-3 the effects of EO 

feeding were only diminished by around 50% (Table 6). The washout period had a greater 

effect in liver, and only 16:1 and 18:3n-6 showed significant differences between the FO and 

EF fish (Table 7).  

 

4. Discussion 

Aquaculture is investigating new oil sources for fish diets because FO supplies are 

becoming more and more limiting (New, 1999). Researchers are focussing on various VOs 

such as rapeseed (Bell et al., 2001), soybean and linseed (Izquierdo et al., 2005), as well as 

some borraginaceae plants (Bell et al., 2006; Tocher et al., 2006), with some good results 

obtained with both salmonids (Bell et al., 2001, 2003, Caballero et al., 2002) and marine fish 

(Montero et al., 2003, 2005; Benedito-Palos et al., 2007). Generally, these studies have shown 

that growth and other developmental parameters were largely unchanged with 100% 

substitution of FO in salmonids (Bell et al., 2003; Tocher et al., 2006), or up to 60 % 
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substitution in marine fish species (Montero et al., 2003; Izquierdo et al., 2005). The lower 

level of replacement possible with marine fish is explained by their requirement for higher 

levels of dietary EPA and DHA for optimal growth and health (Kalogeropoulos et al., 1992; 

Ibeas et al., 1994), due to their inability to produce sufficient HUFA endogenously associated 

with restricted capacity of the enzymes necessary to elongate and desaturate the precursor 

18:3n-3 (LNA) (Tocher et al., 2003; Mourente et al., 2005).  

In our study, gilthead seabream survival and growth were not affected by 50% 

substitution of FO by EO in the diet in agreement with other studies carried out in the same 

species using up to 60% substitution with linseed and soybean oils (Izquierdo et al., 2005). In 

contrast, growth of seabream was reduced with 80% substitution of FO with VO (Menoyo et 

al., 2004; Izquierdo et al., 2005, Benedito-Palos et al., 2007). Although fish may prefer FO to 

VO and extruded to pelletized diets (Geurden et al., 2005, 2007), in our case, both diets, the 

pelletized 50% EO diet and the extruded FO diet were consumed equally through the 

experimental period.  

After seven months of feeding, plasma parameters, measured as indicators of overall 

health status of the fish, did not vary greatly between the fish fed FO or EO. Many plasma 

parameters will vary during the day and with time of feeding (Polakof et al., 2007), but they 

were measured in samples collected at exactly the same time in all groups. Triglyceride, 

glucose and cholesterol values were similar to those reported in other studies with gilthead 

seabream and tilapia (Laiz-Carrión et al., 2002, 2005; Chen et al., 2003), and protein values 

were also consistent with those previously reported in gilthead seabream, sturgeon and tilapia 

(Montero et al., 1998; Martinez-Álvarez et al., 2002; Chen et al., 2003). Previously, Lee et al., 

(2003), showed that plasma protein, glucose and cholesterol levels were not affected by 

dietary VO in starry flounder, but GOT decreased with 60-80% substitution of FO with VO, 

whereas with total or low substitution levels this hepatic enzyme reached higher values (Lee 
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et al., 2003). Several hepatic enzymes such as GOT, ALP and cholinesterase decreased after 4 

months of feeding with EO in the present trial. Increased hepatic enzymes may indicate 

hepatic lesion, perhaps a result of induced stress as reported in tilapia (Chen et al., 2003). In 

contrast, few studies report reduction activity of these enzymes, although Chen et al., (2003) 

showed GTP, GOT and ALP decreased with nephrocalcinosis in tilapia. However, the values 

for these enzymes vary greatly among studies and species (Lee et al., 2003; Chen et al., 2003) 

and through the year in healthy fish (Chen et al., 2003). Therefore, it is difficult to establish a 

healthy range for these parameters in fish, and to conclude whether the values in fish fed EO 

for 4 months remained within a healthy range despite being significantly different to those 

from the fish fed FO. In the absence of any other supporting data, we conclude that the lower 

hepatic enzymes levels found in EO fish did not reflect major pathology particularly as the 

activities had returned to the level of those in fish fed FO after 7 months of feeding. Cortisol 

values were unaffected by diet after 4 months and were similar to other studies with confined 

gilthead seabream (Montero et al., 1998; Laiz-Carrión et al., 2002). At the end of the trial the 

cortisol range was higher, probably due to water temperature, which increased from 20 to 

25ºC over the experimental period. Cortisol was shown to increase with increasing water 

temperature in Adriatic sturgeon, (Cataldi et al., 1998).   

The inclusion of VOs in diets for carnivorous fish may produce an increment in liver fat 

(Kalogeropoulos et al., 1992; Menoyo et al., 2004), HSI (Piedecausa et al., 2007) and lipid 

droplets in both hepatocytes and enterocytes (Olsen et al., 1999; Caballero et al., 2002). In 

contrast to other studies with VO (Figueiredo-Silva et al., 2005; Benedito-Palos et al., 2007), 

the HSI as well as the lipid contents in the muscle were lower and it tended to be lower in 

liver in fish fed the EO diet compared with those fed the FO diet. This effect was confirmed 

by the finishing period where HSI in the EF fish were restored to the values of fish fed the FO 

diet. Nevertheless, in this period the total lipids in the tissues tended to be only partly 
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restored. A similar effect of VO on HSI in seabream has been reported previously (Menoyo et 

al. 2004; Benedito-Palos et al., 2007), although liver fat level was contradictorily increased in 

one of the studies (Menoyo et al. 2004). In the present study HSI values were lower, even in 

fish fed the FO diet, than those reported by Menoyo et al. (2004) and Benedito-Palos et al., 

(2007). Lower HSI is also found in wild gilthead seabream (Grigorakis et al., 2002) and may 

be an indicator of healthier fish. The fact that tissue fat was decreased by the dietary EO may 

be partly explained by the lower level of 18:2n-6, which has been, according to the abundant 

available bibliography, implicated in the fat accumulation observed in fish fed other VOs 

(Sargent et al., 2002). On the other hand, other research showed that γ-linolenic acid (18:3n-6) 

reduced weight gain and body fat in rats (Phinney et al., 1993) and facilitated fatty acyl β-

oxidation in rat liver (Takada et al., 1994).  

The significant fat reduction in muscle and the similar trend observed in liver was 

supported by the lipid class data that showed the proportions of total neutral lipids and mainly 

triacyglycerides tended to decrease in fish fed EO compared to fish fed FO. In other studies 

performed with different VO including EO the authors do not report lipid class profiles 

(Figueiredo-Silva et al., 2005; Bell et al., 2006). 

Fatty acid profiles in muscle and liver reflected the dietary VO profiles as observed in similar 

studies performed with different fish species (Montero et al., 2005; Bell et al., 2006). Thus, 

and in agreement with other trials (Bell et al., 2006; Tocher et. al, 2006), EPA was 

significantly reduced and C18 fatty acids increased in fish fed EO. In studies with all VOs, 

18:2n-6 and 18:3n-3 are increased (Bell et al., 2003; Izquierdo et al., 2005), but with EO the 

C18 fatty acids, including 18:3n-6 and 18:4n-3, increased as in the present trial (Bell et al., 

2006; Tocher et. al, 2006). In previous studies with EO, DHA and ARA were also clearly 

decreased in both Arctic char and Atlantic cod (Bell et al., 2006; Tocher et. al, 2006). 

Surprisingly, ARA and DHA were not apparently reduced in the present study with gilthead 
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seabream. However, when expressed in absolute terms (mg g-1 DWB) DHA and ARA values 

were significantly lower in EO fish muscle after 7 months of feeding (4.98 and 3.17 in FO 

and EO fish respectively and 0.23 and 0.16 for ARA in FO and EO respectively).  

Dietary VO induced HUFA synthesis activity in freshwater fish (Tocher et al., 1997; 

Bell et al., 2001). Furthermore, desaturation of 18:3n-3 was greater in fish fed EO than fish 

fed FO in cod (Bell et al., 2006). Elongation activity was observed in the present study, as 

20:3n-6 and 20:3n-3 increased in the tissues of fish fed EO despite not being supplied by the 

diet, suggesting elongation of their respective dietary precursors, 18:3n-6 and 18:3n-3. 

Although, C18-20 elongation activity is low in some fish species (Ghioni et al., 1999), the C20 

elongation products accumulated in fish fed EO support the fact that desaturase activity is 

very low in marine fish including seabream (Tocher and Ghioni, 1999; Bell et al., 2006). 

However, 18:4n-3 from EO was not elongated to 20:4n-3 in gilthead seabream, the same 

situation as observed in cod where 20:4n-3 actually decreased (Tocher et al., 2006). The lack 

of any accumulation of 20:4n-3 was not due to it being a metabolic intermediate in HUFA 

production as n-3HUFA were not increased, with EPA clearly decreased and, although DHA 

tended to be maintained, this was probably due to the known phenomenon of high retention 

rather than synthesis. 

After the wash out period, tissue fatty acid compositions were partly restored as also 

shown in other studies. In salmon previously fed VO, EPA and DHA levels were restored to 

around 80% and 18:2n-6 to about 50% of values in fish fed FO (Bell et al., 2003). In sea bass 

fed VO with a FO wash out period of 150 days, DHA was completely restored but EPA 

remained lower and 18:2n-6 and 18:3n-3 higher (Montero et al., 2005). Similarly, in our study 

not all fatty acids returned to the levels in fish fed FO, including 18:2n-6, 18:3n-3 and EPA in 

the muscle. EPA was also more difficult than DHA to be restored in a previous study with 

gilthead seabream where 60% substitution of FO by VOs followed by a washout was 
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investigated (Izquierdo et al., 2005). In addition, the beneficial fatty acids, 18:3n-6 and 18:4n-

3, which may be responsible for reducion in tissues fat levels, were mostly removed. 

Therefore, a washout phase may not be beneficial in seabream fed EO as a FO substitute, as 

18:2n-6 was not totally reduced and EPA not fully recovered, and the potential beneficial 

effects of a fatty acid profile richer in 18:3n-6, 18.4n-3 and 20:3n-6 were removed.  

In summary, 50% substitution of FO by EO in gilthead seabream did not negatively 

affect growth and health of fish. Moreover, the EO reduced fat in muscle and the resultant 

fatty acid profile of fish flesh is  relatively good compared to other VO substitutes, and may 

not require a washout period with a FO finishing diet.  
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Table 1. Proximate composition (%DWB), lipid class (%DWB) and fatty acid profiles (weight %) of 

dietary treatments and Echium oil. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results represent means ± SD (n=3). Totals include some minor components not shown. DWB: Dry weight 

basis. UK: Unknown. 1 Contains n-9 and n-7 isomers. 2 Contains n-11 and n-9 isomers.  

  
 
 
 
 

 FO diet EO diet Echium oil 
        
% Moisture  9.0 ± 1.1 8.9 ± 0.3  
% Ash 7.3 ± 0.2 8.7 ± 0.4  
% Crude fiber  3.0 ± 0.0 3.1 ± 0.0  
% Protein 41.6 ± 0.6 43.4 ± 0.9  
% Fat 20.7 ± 1.6 20.7 ± 0.8  
% Neutral lipid 19.1 ± 0.1 18.8 ± 0.1  
% Polar lipid  1.6 ± 0.1 1.9 ± 0.1  

16:0 18.7 ± 0.4 10.8 ± 0.0 5.5 
16:1 1 6.7 ± 0.0 3.5 ± 0.0 0.0 
18:0 3.6 ± 0.2 2.2 ± 0.0 2.6 
18:1 n-9 9.8 ± 0.3 12.3 ± 0.0 14.8 
18:2 n-6 4.4 ± 0.1 13.4 ± 0.0 26.9 
18:3 n-6 0.2 ± 0.0 4.7 ± 0.0 10.5 
18:3 n-3 1.4 ± 0.1 14.0 ± 0.0 29.9 
18:4 n-3 2.8 ± 0.1 5.4 ± 0.0 8.0 
20:1 2 2.1 ± 0.0 6.5 ± 0.0 0.9 
20:2 n-6 0.2 ± 0.0 0.2 ± 0.0 0.1 
20:3 n-6 0.1 ± 0.1 0.0 ± 0.0 0.0 
20:4 n-6 0.8 ± 0.0 0.1 ± 0.2 0.0 
20:3 n-3 0.2 ± 0.0 0.3 ± 0.1 0.0 
20:4 n-3 0.7 ± 0.0 0.1 ± 0.2 0.0 
20:5 n-3 12.3 ± 0.5 4.3 ± 0.0 0.0 
22:1 2  1.8 ± 0.2 7.3 ± 0.0 0.3 
22:5 n-3 1.4 ± 0.1 0.4 ± 0.0 0.0 
22:6 n-3 13.1 ± 0.2 5.6 ± 0.0 0.0 
UK 1.5 ± 0.3 0.5 ± 0.1 0.1 

Saturates 30.5 ± 0.3 17.0 ± 0.0 8.24 
Monoenes 25.9 ± 0.1 32.9 ± 0.2 16.02 
n-9 13.2 ± 0.3 19.7 ± 0.0 14.98 
n-6 6.1 ± 0.2 18.5 ± 0.3 37.47 
n-3 32.9 ± 0.7 30.6 ± 0.3 37.95 
n-3 HUFA 28.2 ± 0.7 11.0 ± 0.3 0.00 
n-3/n-6 5.4 ± 0.3 1.7 ± 0.0 1.01 
18:1/n-3 HUFA 0.4 ± 0.0 1.3 ± 0.0 8.24 
AA/EPA 0.1 ± 0.0 0.0 ± 0.0 --- 
DHA/EPA 1.1 ± 0.0 1.3 ± 0.0 --- 
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Table 2. Plasma parameters from gilthead seabream after 4 and 7 months of feeding with the FO, 

EO and EF (washout period of 3 months) diets.  

Plasma parameters (4 months) FO diet EO diet  

Cholesterol (mmol l-1) 5.7 ± 0.5 6.3 ± 0.6  
Triglycerides (mmol l-1) 3.4 ± 0.8 2.9 ± 1.1  
GOT - AST (U l-1 37ºC) 24.5 ± 11.1 13.3 ± 4.2  
GPT - ALT (U l-1 37ºC) 8.7 ± 3.3 4.0 ± 0.0 * 
ALP (U l-1 37ºC) 300.0 ± 57.5 208.0 ± 62.8 * 
Cholinesterase (U l-1 37ºC) 40.9 ± 5.5 34.0 ± 4.2 * 
Lipase (U l-1 37ºC) 61.4 ± 19.3 55.6 ± 16.7  
Protein (g l-1) 39.6 ± 3.3 34.8 ± 6.0  
Glucose (mmol l-1) 4.4 ± 1,0 4.0 ± 1.2  
Amylase (U l-1 37ºC) 4.9 ± 2.7 2.8 ± 2.2  
Cortisol (ng ml-1) 10.5 ± 8.4 7.4 ± 6.4  
 
Plasma parameters (7 months) FO diet EO diet   EF diet 

Cholesterol (mmol l-1) 5.7 ± 1.5  6.2 ± 1.0  5.2 ± 0.6 
Triglycerides (mmol l-1) 3.2 ± 1.0  2.8 ± 0.6  3.1 ± 0.9 
GOT - AST (U l-1 37ºC) 23.7 ± 9.6  22.9 ± 10.7  21.2 ± 9.9 
GPT - ALT (U l-1 37ºC) 5.4 ± 4.0  3.4 ± 2.0  7.3 ± 3.7 
ALP (U l-1 37ºC) 353.4 ±.151.2  270.4 ± 55.2  348.8 ±.120.0 
Cholinesterase (U l-1 37ºC) 42.0 ± 6.0  39.7 ± 5.1  48.8 ± 14.4 
Lipase (U l-1 37ºC) 60.0 ± 22.0  58.7 ± 14.0  72.0 ± 14.0 
Protein (g l-1) 35.3 ± 4.5  38.4 ± 4.7  35.8 ± 6.4 
Glucose (mmol l-1) 4.8 ± 1.3  3.9 ± 0.7  4.9 ± 1.5 
Amylase (U l-1 37ºC) 2.2 ± 2.3  2.6 ± 1.6  2.3 ± 2.1 
Cortisol (ng ml-1) 45.8 ± 34.0  27.5 ± 27.1  59.0 ± 19.5 

Results represent means ± SD (n=6).  

For 4 months, pairs of values within a given row which are significantly different (P<0.05) are shown (*). 

For 7 months, means within a given row bearing different letters are significantly different (P<0.05). EF: 

EO-FO washout diet. 
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Table 3. Total lipid (TL) contents and lipid class compositions (mg g-1 DWB) of muscle from 

gilthead seabream after 4 and 7 months of feeding with the FO, EO and EF (washout period of  3 

months) diets. 

 
 

 
Diet  (7 months) FO diet 

 
EO diet   EF diet 

TL  47.7 ± 7.7 a 33.5 ± 6.2 b 35.0 ± 8.7   b 

Sphingomyelin 0.3 ± 0.1 a 0.3 ± 0.0 ab 0.2 ± 0.1   b 
Phosphatidylcholine 7.4 ± 1.4  7.0 ± 1.2  6.0 ± 2.4 
Phosphatidylserine 0.5 ± 0.1 a 0.3 ± 0.1 b 0.4 ± 0.1   ab 
Phosphatidylinositol 1.3 ± 0.4 a 1.2 ± 0.5 ab 0.8 ± 0.3   b 
Phosphatidylglycerol† 0.1 ± 0.1 b 0.3 ± 0.2 a 0.1 ± 0.2   b 
Phosphatidylethanolamine 3.0 ± 0.5 a 2.9 ± 0.7 ab 2.2 ± 0.7   b 
Diacylglycerol 0.1 ± 0.2  0.1 ± 0.1  0.1 ± 0.1 
Cholesterol 3.6 ± 0.7  3.2 ± 0.4  3.1 ± 0.9 
Free fatty acids 0.1 ± 0.1  0.2 ± 0.3  0.2 ± 0.3 
Triacylglycerol 30.8 ± 7.7 a 17.5 ± 5.2 b 21.7 ± 7.4   b 
Esterol esters 0.5 ± 0.5  0.3 ± 0.2  0.3 ± 0.4 
            
Total polar lipids 12.6 ± 1.9  12.1 ± 2.2  9.7 ± 3.7    
Total neutral lipids 35.1 ± 7.6 a 21.3 ± 5.1 b  25.4 ± 7.7   b 

Results represent means ± SD (n=12).  

Footnote as in Table 2. † May also include phosphatidic acid and cardiolipin. TL: Total lipid; DWB: Dry 

weight basis; EF: EO-FO washout diet. 

 

 

Diet  (4 months) FO diet EO  diet   

TL  43.2 ± 7.6 33.5 ± 6.0 * 

Sphingomyelin 0.4 ± 0.2 0.2 ± 0.1 * 
Phosphatidylcholine 9.0 ± 2.3 7.2 ± 2.3  
Phosphatidylserine 0.5 ± 0.2 0.5 ± 0.1  
Phosphatidylinositol 1.5 ± 0.3 1.6 ± 0.6  
Phosphatidylglycerol† 0.4 ± 0.1 0.3 ± 0.2  
Phosphatidylethanolamine 3.8 ± 1.0 3.2 ± 1.0  
Diacylglycerol  0.0 ± 0.0 0.3 ± 0.1 * 
Cholesterol 4.2 ± 0.8 3.0 ± 0.9 * 
Free fatty acids 0.2 ± 0.4 0.1 ± 0.1  
Triacylglycerol 22.2 ± 6.6 16.7 ± 2.2  
Esterol esters 0.8 ± 0.2 0.6 ± 0.3  
        
Total polar lipids 15.7 ± 3.8 12.9 ± 4.1  
Total neutral lipids 27.4 ± 6.8 20.6 ± 2.6 * 
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Table 4. Hepatosomatic Index (HSI), total lipid (TL) content and lipid class compositions (mg g-1 

DWB) of liver from gilthead seabream after 4 and 7 months of feeding with the FO, EO and EF 

(washout period of  3 months) diets. 

Diet  (4 months) FO diet EO diet 
HSI 1.18 ± 0.3 0.99 ± 0.2  
TL 205.6 ± 42.7 193.5 ± 46.4  

Sphingomyelin 2.3 ± 0.9 2.3 ± 6.5  
Phosphatidylcholine 23.6 ± 5.7 33.0 ± 1.5  
Phosphatidylserine 1.4 ± 0.3 1.8 ± 1.5  
Phosphatidylinositol 6.4 ± 1.7 6.3 ± 1.1  
Phosphatidylglycerol† 4.4 ± 1.6 4.7 ± 5.4  
Phosphatidylethanolamine 16.0 ± 4.8 17.2 ± 0.0  
Diacylglycerol 0.0 ± 0.0 0.0 ± 4.8  
Cholesterol 23.0 ± 6.3 25.7 ± 2.7  
Free fatty acids 6.4 ± 6.0 9.4 ± 2.81  
Triacylglycerol 116.6 ± 33.6 82.1 ± 3.0  
Esterol esters 5.4 ± 1.9 9.9 ± 3.0 * 
        
Total polar lipids 54.2 ± 12.8 66.4 ± 15.8  
Total neutral lipids 151.4 ± 33.7 127.2 ± 35.1  

 
Diet  (7 months) FO diet EO diet EF diet   

HSI 0.98 ± 0.2  
 
a 0.85 ± 0.1 b 0.99 ± 0.1  a 

TL 269.7 ± 48.6  218.2 ± 74.7  220.4 ± 32.4  

Sphingomyelin 1.5 ± 0.9  1.2 ± 0.3  0.6 ± 0.6  
Phosphatidylcholine 22.5 ± 7.5  23.5 ± 3.2  26.5 ± 1.1  
Phosphatidylserine 1.1 ± 1.0  1.1 ± 0.3  1.4 ± 0.4  
Phosphatidylinositol 4.8 ± 1.7  4.4 ± 1.1  5.6 ± 0.2  
Phosphatidylglycerol† 0.0 ± 0.0  0.0 ± 0.0  0.0 ± 0.0  
Phosphatidylethanolamine 13.9 ± 4.4  15.1 ± 2.8  17.9 ± 0.7  
Diacylglycerol 6.5 ± 3.3  4.4 ± 1.6  6.2 ± 1.5  
Cholesterol 15.4 ± 5.6  16.0 ± 2.8  17.5 ± 0.9  
Free fatty acids 11.8 ± 6.0  6.4 ± 3.6  9.8 ± 2.0  
Triacylglycerol 183.3 ± 29.0  130.0 ± 61.3  123.9 ± 31.7  
Esterol esters 8.9 ± 2.4  15.0 ± 2.2  10.6 ± 4.5  
             
Total polar lipids 43.8 ± 14.5  46.4 ± 8.3  52.4 ± 2.7  
Total neutral lipids 225.9 ± 39.5  171.8 ± 69.0  168.0 ± 34.7  

Results represent means ± SD (n=4). 

Footnote as in Table 3. 
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Table 5. Total fatty acid content (mg g-1 DWB) and composition (weight %) of total lipids of muscle 

and liver from gilthead seabream after 4 months of feeding with the FO and EO diets. 

 Muscle  Liver 

 FO diet EO diet  FO diet EO diet 

Total FA 30.5 ± 7.4 25.5  4.4  176.8 ± 44.5 163.0 ± 41.1 

14:0 4.3 ± 0.8 4.1 ± 0.9  5.0 ± 0.3 4.0 ± 0.9    
16:0 19.0 ± 2.0 17.0 ± 1.9 * 19.0 ± 0.2 16.9 ± 1.3   * 
16:1 1 7.2 ± 1.0 6.1 ± 1.2 * 7.8 ± 0.4 5.5 ± 0.8   * 
18:0 4.1 ± 0.8 3.8 ± 0.9  4.8 ± 0.4 4.4 ± 0.5 
18:1 n-9 17.0 ± 1.5 17.0 ± 0.9  17.6 ± 0.5 17.9 ± 0.6 
18:2 n-6 4.9 ± 0.7 7.5 ± 0.8 * 5.0 ± 0.4 8.8 ± 1.2   * 
18:3 n-6 0.1 ± 0.1 1.3 ± 0.3 * 0.1 ± 0.1 1.7 ± 0.6   * 
18:3 n-3 1.1 ± 0.2 3.8 ± 0.8 * 1.2 ± 0.0 5.6 ± 1.7   * 
18:4 n-3 1.5 ± 0.3 2.0 ± 0.5 * 1.5 ± 0.2 2.0 ± 0.3   * 
20:1 2 2.5 ± 0.4 3.4 ± 0.5 * 1.8 ± 0.4 3.4 ± 0.1   * 
20:2 n-6 0.2 ± 0.0 0.2 ± 0.0  0.3 ± 0.0 0.4 ± 0.1 
20:3 n-6 0.1 ± 0.1 0.4 ± 0.1 * 0.1 ± 0.1 0.9 ± 0.0   * 
20:4 n-6 0.9 ± 0.3 0.9 ± 0.2  0.9 ± 0.1 0.7 ± 0.1 
20:3 n-3 0.2 ± 0.1 0.2 ± 0.0  0.2 ± 0.0 0.5 ± 0.1   * 
20:4 n-3 0.9 ± 0.1 0.8 ± 0.1  1.0 ± 0.0 1.1 ± 0.2 
20:5 n-3 7.4 ± 0.5 5.7 ± 0.7 * 6.7 ± 0.6 4.3 ± 0.6   * 
22:1 2  2.0 ± 0.6 2.8 ± 0.5 * 1.5 ± 0.3 3.0 ± 0.1 
22:5 n-3 3.0 ± 0.2 2.5 ± 0.4 * 3.1 ± 0.1 2.1 ± 0.0   * 
22:6 n-3 17.5 ± 3.1 15.1 ± 3.0  15.7 ± 1.9 12.0 ± 0.9   * 
24:1 n-9 0.9 ± 0.4 1.1 ± 0.4  0.8 ± 0.1 1.0 ± 0.1   * 
UK 0.3 ± 0.2 0.5 ± 0.2  0.5 ± 0.2 0.7 ± 0.0 

Saturates 28.7 ± 2.4 25.9 ± 2.2 * 30.2 ± 0.9 26.4 ± 2.2   * 
Monoenes 29.8 ± 3.3 30.4 ± 2.6  29.6 ± 0.9 30.9 ± 0.4 
n-9 18.0 ± 1.5 18.1 ± 1.0  18.4 ± 0.4 18.9 ± 0.7 
n-3 31.9 ± 2.8 30.5 ± 2.1  29.9 ± 2.0 27.9 ± 0.8 
n-6 6.7 ± 0.8 10.7 ± 1.1 * 6.8 ± 0.3 12.7 ± 2.0   * 
n-3 HUFA 29.2 ± 3.1 24.5 ± 2.9 * 27.0 ± 2.1 20.4 ± 1.2   * 
n-3/n-6 4.9 ± 0.7 2.9 ± 0.4 * 4.4 ± 0.4 2.2 ± 0.3   * 
18:1/n-3 HUFA 0.6 ± 0.1 0.7 ± 0.1 * 0.7 ± 0.1 0.9 ± 0.1   * 
AA/EPA 0.1 ± 0.0 0.2 ± 0.0  0.1 ± 0.0 0.2 ± 0.0 
DHA/EPA 2.4 ± 0.4 2.7 ± 0.7  2.4 ± 0.3 2.8 ± 0.2 

Results represent means ± SD (n=12 for muscle and n=4 for liver). Pairs of values within a given row 

which are significantly different (P<0.05) are shown (*). Totals include some minor components not 

shown. DWB: Dry weight basis. FA: fatty acids. UK: Unknown. 1 Contains n-9 and n-7 isomers. 2 

Contains n-11 and n-9 isomers.  
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Table 6. Total fatty acid content (mg g-1 DWB) and composition (% weight) of total lipids of muscle 

from gilthead seabream after 7 months of feeding with the FO, EO and EF (washout period of 3 

months) diets. 

 FO diet  EO diet   EF diet 

Total FA  37.8 ± 6.7 a 24.7 ± 5.1 b 29.2 ± 7.9   b 

14:0 5.3 ± 0.7 a 3.9 ± 0.9 b 4.4 ± 0.5   b 
16:0 18.5 ± 2.1 a 16.3 ± 1.6 b 17.4 ± 1.3   ab 
16:1 1 7.4 ± 0.9 a 5.3 ± 1.0 b 6.4 ± 0.5   a 
18:0 3.5 ± 0.4  3.6 ± 0.6  3.3 ± 0.5 
18:1 n-9 15.5 ± 1.7  15.1 ± 1.5  15.7 ± 0.8 
18:2 n-6 4.9 ± 0.6 c 9.0 ± 0.3 a 6.1 ± 0.4   b 
18:3 n-6 0.1 ± 0.1 c 1.9 ± 0.3 a 0.7 ± 0.3   b 
18:3 n-3 1.0 ± 0.2 c 5.5 ± 0.8 a 2.3 ± 0.5   b 
18:4 n-3 1.4 ± 0.2 b 2.0 ± 0.3 a 1.6 ± 0.2   b 
20:1 2 4.2 ± 0.6 b 4.1 ± 0.4 b 5.0 ± 0.5   a 
20:2 n-6 0.2 ± 0.0 b 0.3 ± 0.0 a 0.3 ± 0.0   a 
20:3 n-6 0.0 ± 0.0 c 0.5 ± 0.1 a 0.2 ± 0.0   b 
20:4 n-6 0.6 ± 0.1  0.7 ± 0.2  0.6 ± 0.1 
20:3 n-3 0.0 ± 0.0 b 0.2 ± 0.1 a 0.1 ± 0.1   b 
20:4 n-3 0.9 ± 0.1  0.8 ± 0.1  0.9 ± 0.1    
20:5 n-3 6.4 ± 0.9 a 4.3 ± 0.5 c 5.3 ± 0.4   b 
22:1 2  3.8 ± 0.6 b 3.5 ± 0.6 b 4.6 ± 0.5   a 
22:5 n-3 2.6 ± 0.1 a 1.8 ± 0.2 b 2.4 ± 0.2   a 
22:6 n-3 13.2 ± 1.6  13.1 ± 3.2  13.7 ± 1.6 
24:1 n-9 0.7 ± 0.1 b 0.9 ± 0.1 a 0.8 ± 0.1   a 
UK 1.2 ± 0.3  1.0 ± 0.6  1.0 ± 0.4 

Saturates 27.9 ± 2.1 a 24.2 ± 1.6 b 25.7 ± 1.5   b 
Monoenes 51.8 ± 6.8 ab 48.1 ± 3.5 b 54.2 ± 2.6   a 
n-9 24.3 ± 2.4 ab 23.5 ± 2.3 b 26.2 ± 1.5   a 
n-3 27.0 ± 1.9  28.7 ± 2.5  27.3 ± 1.7 
n-6 6.6 ± 0.6 c 12.7 ± 0.5 a 8.5 ± 0.7   b 
n-3 HUFA 23.3 ± 2.2  20.3 ± 3.4  22.5 ± 1.8 
n-3/n-6 4.1 ± 0.5 a 2.3 ± 0.2 c 3.2 ± 0.3   b 
18:1/n-3 HUFA 0.8 ± 0.1  0.9 ± 0.2  0.8 ± 0.1 
AA/EPA 0.1 ± 0.0 b 0.2 ± 0.0 a 0.1 ± 0.0   b 
DHA/EPA 2.1 ± 0.2 b 3.1 ± 0.6 a 2.6 ± 0.3   a 

Results represent means ± SD (n=12). Means within a given row bearing different letters are 

significantly different (P<0.05).  Totals include some minor components not shown. DWB: Dry weight 

basis. EF: EO-FO washout diet. FA: fatty acids. UK: Unknown. 1 Contains n-9 and n-7 isomers. 2 

Contains n-11 and n-9 isomers.  
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Table 7. Total fatty acid content (mg g-1 DWB) and composition (% weight) of total lipids of liver 

from gilthead seabream after 7 months of feeding with the FO, EO and EF (washout period of 3 

months) diets.  

 FO diet  EO diet   EF diet 

Total FA 195.4 ± 34.5  163.8 ±  72.9  191.5 ± 55.0 

14:0 4.8 ± 0.4     3.8 ± 0.3     4.2 ± 0.5    
16:0 18.1 ± 0.5   a  15.7 ± 0.3     b  18.4 ± 1.1   a 
16:1 1 7.3 ± 0.3   a  5.1 ± 0.5     c  6.4 ± 0.3   b 
18:0 4.2 ± 0.2  3.8 ± 0.2  4.5 ± 0.5 
18:1 n-9 20.9 ± 1.8     17.6 ± 0.5  20.7 ± 0.6    
18:2 n-6 5.2 ± 0.0   b  10.1 ± 0.2     a  5.7 ± 0.6   b 
18:3 n-6 0.0 ± 0.0   c  2.5 ± 0.1     a  0.3 ± 0.2   b 
18:3 n-3 1.1 ± 0.1   b  7.7 ± 0.4     a  1.6 ± 0.5   b 
18:4 n-3 1.3 ± 0.2   b  2.5 ± 0.1     a  1.1 ± 0.3   b 
20:1 2 4.9 ± 0.4     4.3 ± 0.2  4.9 ± 0.5    
20:2 n-6 0.3 ± 0.0     0.3 ± 0.1  0.4 ± 0.0 
20:3 n-6 0.0 ± 0.0   b  0.7 ± 0.1     a  0.2 ± 0.0   b 
20:4 n-6 0.6 ± 0.1  0.6 ± 0.1  0.7 ± 0.1 
20:3 n-3 0.2 ± 0.0   b  0.4 ± 0.1     a  0.2 ± 0.0   b 
20:4 n-3 1.1 ± 0.1  1.1 ± 0.1  1.1 ± 0.1 
20:5 n-3 5.2 ± 0.5   a  3.7 ± 0.4     b  4.5 ± 0.2   a 
22:1 2  4.6 ± 0.5   a  3.8 ± 0.3     b  4.4 ± 0.3   ab  
22:5 n-3 3.2 ± 0.2   a  1.8 ± 0.2     b  3.3 ± 0.4   a 
22:6 n-3 11.5 ± 1.0   ab  10.1 ± 0.3     b  12.3 ± 0.6   a 
24:1 n-9 0.7 ± 0.3  0.7 ± 0.2  0.6 ± 0.2 
UK 0.9 ± 0.3  1.3 ± 0.6  1.5 ± 0.4 

Saturates 28.2 ± 0.7   a  24.1 ± 0.7     b  28.0 ± 1.2   a 
Monoenes 38.4 ± 2.0   a  31.5 ± 0.3     b  37.1 ± 0.4   a 
n-9 21.7 ± 1.8   ab  18.4 ± 0.3     b  21.5 ± 0.8   a 
n-3 23.9 ± 1.7   b  27.5 ± 0.5     a  24.4 ± 0.4   b 
n-6 6.7 ± 0.1   c  14.5 ± 0.5     a  7.7 ± 0.7   b 
n-3 HUFA 21.4 ± 1.5   a  16.9 ± 0.8     b  21.6 ± 0.7   a 
n-3/n-6 3.6 ± 0.3   a  1.9 ± 0.1     b  3.2 ± 0.3   a 
18:1/n-3 HUFA 1.0 ± 0.1  1.0 ± 0.0  1.0 ± 0.0 
AA/EPA 0.1 ± 0.0   b  0.2 ± 0.0     a  0.2 ± 0.0   ab 
DHA/EPA 2.2 ± 0.1   b  2.7 ± 0.2     a  2.7 ± 0.2   a 

Results represent means ± SD (n=4).   

Footnote as in Table 6. 
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Fig.1 
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Legends to Figures: 
 
Fig.1. Growth along the experimental period of fish fed with the FO, EO and EF 
(washout period of 3 months) diets. Results are means ± SD (20-30).  
 
 
 

 

 

 

 

 

 

 


