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Abstract
Background Providing an opt-out alternative in discrete choice experiments can often be considered to be important for 
presenting real-life choice situations in different contexts, including health. However, insufficient attention has been 
given to how best to address choice behaviours relating to this opt-out alternative when modelling discrete choice 
experiments, particularly in health studies.
Objective The objective of this paper is to demonstrate how to account for different opt-out effects in choice models. We aim 
to contribute to a better understanding of how to model opt-out choices and show the consequences of addressing the effects 
in an incorrect fashion. We present our code written in the R statistics program so that others can explore these issues in their 
own data.
Methods In this practical guideline, we generate synthetic data on medication choice and use Monte Carlo simulation. We 
consider three different definitions for the opt-out alternative and four candidate models for each definition. We apply a 
frequentist-based multimodel inference approach and use performance indicators to assess the relative suitability of each 
candidate model in a range of settings.
Results We show that misspecifying the opt-out effect has repercussions for marginal willingness to pay estimation and the 
forecasting of market shares. Our findings also suggest a number of key recommendations for DCE practitioners interested 
in exploring these issues.
Conclusions There is no unique best way to analyse data collected from discrete choice experiments. Researchers should 
consider several models so that the relative support for different hypotheses of opt-out effects can be explored.

Key Points for Decision Makers

Overlooking opt-out effects in discrete choice experiments can lead to erroneous policy recommendations.

Opt-out effects are context specific and there are a myraid of potential reasons that may explain why participants choose
the opt-out alternative, meaning that there is no unique best way to analyse opt-out choices.

Practitioners should consider many models and, subsequently, apply a multimodel inference procedure so that the relative
support for each model can be assessed.

1 Introduction

Discrete choice experiments (DCEs) are now an established method for preference elicitation and non-market valuation in
health and other areas of applied economics. In health economics, they have been applied to elicit preferences for a broad
range of health service interventions, treatments, devices and medications. In these applications, participants (e.g., patients,
health professionals or carers) are typically asked to choose between two or more product or service alternatives based on
their preferences and the attributes that describe these alternatives (e.g., see Craig et al. [1] for a recent overview). In many
DCE applications, participants are also provided with an alternative that is not designed by the experimenter, but represents
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an ‘opt-out’ option [2, 3]. This opt-out alternative—also referred to as the ‘status-quo’—is the participant’s reference point
or current situation [4].

The inclusion of the opt-out alternative in DCEs depends on the research question [5]. For example, if the research seeks
to predict likely adoption of a new intervention, service, treatment or medication, it is necessary to include an opt-out option.
It creates realism in the sense that participants are not forced to choose between the experimentally designed alternatives and
can, instead, opt-out. Ensuring participants choose in a way that is consistent with how they would do in a real-life situation
is important for welfare-consistent estimation of DCEs [6]. Indeed, in such cases restricting the choice to be between two
or more potentially unappealing alternatives raises concerns of external validity [2]. If alternatives are unlikely to be chosen
in practice, any interpretations of the estimated marginal utilities and choice share predictions may well be inappropriate.
For these reasons, the inclusion of an opt-out option in DCEs is generally recommended (e.g., see Lancsar and Louviere [3],
Louviere and Lancsar [6] and Bridges et al. [7] for justification in health applications and Johnston et al. [8] for contemporary
guidance on the opt-out alternative for stated preference practitioners in general). On the other hand, if the objective of the
study is primarily to estimate marginal rates of substitution among attributes, compare levels and attributes or alternatives of
the choice experiments, an opt-out option may be unnecessary, and thus, forced choice tasks could be applied [9, 10].

While the inclusion of an opt-out alternative is widespread practice, it is much less clear how the opt-out alternative
should be defined and presented to participants. Researchers designing DCEs have some latitude in the manner in which
this alternative is defined (e.g., as a ‘none-of-these’, or as an ‘actual status-quo’ described by the baseline attribute levels
or a participant’s current levels). Most importantly, however, what is meant by the opt-out alternative should be clear to
participants. It should be understood and viewed as credible and in a manner that allows participants to anticipate the likely
effects on their welfare [8]. Since some opt-out definitions are considered more real or plausible than others, researchers
are faced with the challenge on how best to present the hypothetical market for health goods or services in question so that
it resembles what the real-life choice situation might look like. There is also the need to be mindful of the fact that the
opt-out alternative can draw disproportionately from the other available alternatives, such that the inclusion of the opt-out
alternative may affect the relative choice shares observed for the other alternatives [5, 11–13]. While the opt-out alternative
is a genuine choice in cases where a participant feels that it is most aligned with their preferences, it is well known and
documented within the DCE literature that the propensity of participants choosing this alternative is often explained by more
than just its attributes. One of the leading explanations for this is the endowment effect [14–17], whereby participants have
a preference for retaining their current situation and, thus, a tendency to choose what they already have (even if the other
alternatives are clearly superior). Relatedly, the opt-out alternative, which is often experienced by the participant, in many
instances is perceived differently from the other alternatives. As a result, the potential losses or gains associated with the
experimentally designed alternatives are considered relative to the opt-out alternative [18]. A further reason for the selection
of opt-out alternatives is to avoid making difficult trade-offs [19]. This reluctance to choose is further subdivided by Boxall
et al. [4] into a preference for inaction (omission) or a statement of non-participation (‘choose none’). Similarly, a failure
of the participant to understand the choice context may also give rise to opt-out choices. Also, when two or more of the
non-opt-out alternatives have significant advantages and disadvantages on the basis of some (or all) of the attributes (thus
making the choice difficult), or when the choice can be delayed, participants often revert back to their default or status-quo
[20]. Baron and Ritov [21] also finds that people prefer bearing the consequences of inaction by sticking to their status-quo,
rather than those of wrong action by choosing an alternative that is not their usual option. Participants who are attempting
to be equivocal, provide strategic or protest responses, or who do not have a strong opinion or preference, may also be more
inclined to choose the opt-out alternative. This would also hold for situations where participants are indecisive or indifferent
between presented choice alternatives [22]. In such cases, the opt-out choices would not provide information about the
attractiveness of non-opt-out alternatives in choice tasks [23].

Whatever the reason might be, it is important to account for these opt-out effects when modelling DCEs. Indeed, over-
looking these effects could lead to erroneous policy recommendations and inaccurate measurement of welfare [4], since
participants’ preferences and decision-making behaviour are not appropriately reflected. This is a particular concern in
health focused DCEs, given that opt-out effects may be more prominent in the domain of public policy outcomes [24]. How-
ever, the myriad of different reasons that may explain why participants choose the opt-out alternative can make it difficult
to know what model specification should be used. Ideally, the model should enable the researcher to distinguish between
situations where participants have made genuine opt-out choices and where they exhibit behaviour beyond the theory of
rational choice. This paper demonstrates how to account for some of the possible different opt-out effects in choice models
using simulated datasets having different choice behaviours. While, admittedly, this paper does not provide the last word in
the opt-out issues (since this would require a conceptual framework and testing across many different empirical datasets in
different contexts), it does provide a primer on how to model opt-out choices. In doing so, we hope that it contributes to a
better understanding of the issues and shows some of the potential consequences of addressing the effects in an incorrect
fashion. Our intention is to provide a resource for practitioners who are currently using, or considering to use, DCEs and are
keen to explore potential opt-out effects present in their own data. To facilitate this, and for the purpose of replication, we
provide our codes written in the R statistics program [25] for our practical demonstration.

The remainder of the paper is structured as follows: in Section 2 we outline some of the modelling approaches for dealing
with opt-out effects in DCEs; Section 3 presents a practical demonstration on how to econometrically deal with opt-out
effects in DCEs using simulated data; Section 4 reports the main findings; and, Section 5 concludes and provide advices for
other practitioners exploring opt-out effects.
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2 Modelling discrete choice data with opt-out alternatives

2.1 Background notation

Starting with the conventional random utility maximisation framework1, we specify utility, U , where participants are indexed
by n, chosen alternatives by i, the set of available alternatives by J, choice occasions by z, and attributes of this alternative
are represented by column vector xniz, we have:

Uniz = βββxniz + εniz, (1)

where βββ is the row vector of marginal utility parameters for the attributes, εniz is an error term from an independent and
identically distributed type I extreme value distribution with variance π2/6λ 2, and where λ is a scale parameter (that, for
identification purposes, is normally set to one). Given these assumptions, the probability of the sequence of choices made by
participant n can be represented by the multinomial logit model:

Pr(yn|Xn,βββ,λ = 1) =
Zn

∏
z=1

exp(βββxniz)
J
∑
j=1

exp(βββxn jz)

, (2)

where yn gives the sequence of choices over the Zn choice occasions for participant n, yn =
[
in1 in2 . . . inZn

]
.

The choice probability retrieved from Eq. 2 assumes that the likelihood of choice depends only on the attribute levels
of each alternative and that the error terms are uncorrelated over alternatives and have the same variance. However, it is
important to recognise that the probability of choice may depend not only on the utilities associated with the attributes, but
also on opt-out effects. This is because there can be systematic differences in preferences, substitution patterns or decision-
rules for the opt-out alternative. In such cases, the multinomial logit model can be inappropriate, meaning that different
model specifications may be warranted. In this practical demonstration, we compare four alternative model specifications:
(i) a multinomial logit model with an opt-out alternative-specific constant to accommodate the average influence of factors
that are not explained by the attributes on opt-out choices; (ii) a nested logit model that permits the random error terms
for the non-opt-out alternatives to share a common component; (iii) an independent availability logit model to allow for
elimination-by-aspect like behaviour; and, (iv) a combination of (i)–(iii).

2.2 Modelling opt-out effects

2.2.1 Multinomial logit model with an opt-out alternative-specific constant

The most straightforward approach for addressing opt-out effects is to introduce an alternative-specific constant, γ , into the
utility function for the opt-out alternative:

Pr(yn|Xn,βββ,λ = 1,γ) =
Zn

∏
z=1

exp(βββxniz + Iiγ)
J
∑
j=1

exp(βββxn jz + I jγ)

, (3)

where I is an indicator variable equal to one when the alternative is the opt-out alternative and zero otherwise so that the
constant is only added to the utility expression for the opt-out alternative. In cases where there are no systematic differences
between the average effect of factors not included in the utility expressions for the non-opt-out alternatives and the opt-out
alternatives, we would be unable to reject the null hypothesis that γ = 0. However, in situations where γ 6= 0 (either negative
or positive) the systematic differences have a bearing on choice probabilities, meaning that there are opt-out effects. While
this additional parameter captures the average effect of all factors that influence opt-out choices that are not included in the
utility specification, it should be noted that this parameter includes various components (e.g., status-quo bias, unobserved
attributes and the impacts of complexity). This means that its interpretation as a utility parameter can be unclear.

2.2.2 Nested logit model

The opt-out alternative is often experienced by participants, while the experimentally designed alternatives can only be
imagined. For this reason, participants may consider the non-opt-out alternatives as substitutes, meaning that the utilities of
the non-opt-out alternatives may be more correlated among themselves than with the opt-out alternative (e.g., see Scarpa
et al. [26] for a discussion). A nested logit specification may, therefore, be an appropriate approach for exploring opt-out
effects since it can accommodate this sort of substitution pattern.

1We note that random utility maximisation is not the only framework for modelling choices. Indeed, for certain decisions other choice axioms may
be better suited, such as regret minimisation. In this paper, we utilise the most widely used framework to analyse opt-out effects.
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Figure 1 Tree diagram showing the hierarchy of opt-out and L non-opt-out choices

To illustrate this substitution pattern, consider the tree diagram in Figure 1. This depicts an upper level choice between
opting out and not opting out and a lower level (conditional) choice between L alternatives in the non-opt-out ‘nest’.2 In
this case, the error terms of the non-opt-out alternatives are correlated. This violates the multinomial logit model assumption
that the error terms are independently distributed. A nested logit model can be specified to address this opt-out effect that
assumes the random terms for the non-opt-out alternatives can be partitioned into a distinct (i.e., alternative-specific) random
component and a common random component that is shared across all non-opt-out alternatives. This common random
component leads to covariance between the overall errors (both distinct and common errors) for the non-opt-out alternatives.
However, the errors for the non-opt-out alternatives remain uncorrelated with those of the opt-out alternative. See Train [27]
for further details.

The overall error terms for every alternative are assumed to be type I extreme value distributed with variance π2/6λ 2,
as in the multinomial logit model (where λ = 1). The distinct and common error components for non-opt-out alternatives
are also assumed to be type I extreme value distributed, but with variances π2µ2/6 and π2

(
1−µ2

)
/6 respectively, where

0 ≤ µ ≤ 1 . The value 1− µ can be used as a measure of correlation or substitution: µ = 0 leads to perfect correlation
between pairs of non-opt-out alternatives meaning that the choice between the non-opt-out alternatives is deterministic;
µ = 1 signifies zero correlation among non-opt-out alternatives, which is equivalent to the multinomial logit model; and,
0 < µ < 1 implies non-zero correlation among non-opt-out alternatives, with increased substitution as µ → 0. Therefore, in
cases where there is substitution among the non-opt-out alternatives, we can reject the null hypothesis that µ = 1.

The upper level marginal choice probability, Pr(mniz|·), in Figure 1 between opting out and not opting for participant n
in choice occasion z is given by:

Pr(mniz|Xnz,βββ,λ = 1,µ) =
exp [Ii (βββxniz)+(1− Ii)µϒ ]

exp
(
βββxnI jz

)
+ exp(µϒ )

. (4a)

The respective lower level conditional choice probability, Pr(cniz|·), in Figure 1 is expressed using:

Pr(cniz|Xnz,βββ,λ = 1,µ) =


1 if the opt-out alternative is chosen; and,

exp
(
βββxniz

µ
−ϒ

)
for alternatives within the non-opt-out nest.

(4b)

The marginal and conditional probabilities are linked by the term ϒ , which can be interpreted as the expected utility that a
participant derives from the choice among the non-opt-out alternatives:

ϒ = ln

[
L

∑
l=1

exp
(
βββxnlz

µ

)]
. (4c)

The nested logit choice probability can, therefore, be expressed as the product of the upper level marginal choice proba-
bility and the lower level conditional probability, meaning that the overall probability for the sequence of choices made by
participant n is given by:

Pr(yn|Xn,βββ,λ = 1,µ) =
Zn

∏
z=1

[Pr(mniz|Xnz,βββ,λ = 1,µ)Pr(cniz|Xnz,βββ,λ = 1,µ)] . (4d)

2.2.3 Independent availability logit model

The models thus far assume all participants consider all offered alternatives, including those that are unacceptable to them.
However, suppose some participants, for whatever reason, have an overwhelming preference for the current state of affairs
and that any change from this opt-out baseline is perceived as a loss. In an extreme case, these participants may exclude
the non-opt-out alternatives from their actual consideration set and, therefore, consistently choose the opt-out alternative,
a phenomenon often referred to as serial non-participation (e.g., see von Haefen et al. [28], Meyerhoff and Liebe [16] and

2Note, however, that the derivation of the nested logit model does not necessarily imply that participants make choices in this hierarchical manner.
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Boxall et al. [4] for a discussion). Conversely, other participants, for whatever reason, may have a strong dislike of the opt-
out, in which case they adopt a semi-compensatory choice process with the non-opt-out alternatives constituting their actual
consideration set. These participants make their choice among the alternatives within this consideration set following a utility
maximisation compensatory rule. So, the standard consideration set assumption may be inappropriate. Following Manski
[29], a probabilistic model can be formulated to account for this type of choice behaviour to help distinguish between the
experimentally designed choice task that is presented to participants and the participant’s actual consideration set. In order to
achieve this, we consider the independent availability logit model (e.g., see Frejinger et al. [30], Campbell et al. [31], Kaplan
et al. [32] and Campbell and Erdem [33] for some examples). Under this specification, the choice probability is given by:

Pr(yn|Xn,βββ,λ = 1,φφφ) =
S

∑
s=1

φs Pr(yn|Cs,Xn,βββ,λ = 1) , (5a)

where Pr(yn|Cs,Xn,βββ,λ = 1) is the conditional probability of the sequence of choices given the consideration set is Cs ⊆ S,
where S is the set of all subsets, φs is the unconditional probability that Cs is the ‘true’ consideration set. Specifically, S is
the set of all non-empty subsets of Cs (i.e., all the potential choice subsets, which we describe below in the context of this
practical demonstration). Since a participant’s true consideration set cannot be known with certainty, the model assumes that
actual choice tasks are latent and vary across the S classes, while conditional on the consideration set (and hence the class)
the choice probability is multinomial logit:

Pr(yn|Cs,Xn,βββ,λ = 1) =
Zn

∏
z=1

exp
(
βββ′xniz

)
∑

j∈Cs

exp
(
βββ′xn jz

) . (5b)

Typically in an independent availability logit model, the number of classes, S, is determined as a function of the number
of alternatives (e.g., for a universal set with J alternatives, there are 2J − 1 possible consideration sets). Here, however, we
are interested in exploring whether some participant’s choices are governed by an elimination-by-aspects decision rule (see
Erdem et al. [34]), whereby they restrict their choice task on the basis of the opt-out alternative. Based on this, three types
of behaviour can be identified: (i) a subset (Cs=1) who always only consider (and choose) the opt-out alternative (perhaps
for genuine reasons or due to serial non-participation); (ii) a subset (Cs=2) who restrict their actual choice task to only the
non-opt-out alternatives; and, (iii) a subset (Cs=3) whose actual choice task consists of all alternatives offered in the choice
task (i.e., who consider both the opt-out and non-opt-out alternatives). These three patterns (i.e., S = {Cs=1,Cs=2,Cs=3})
can be dealt with using an independent availability logit model with three latent classes, where each class describes a
unique consideration set. As noted above, the alternatives considered by a participant cannot be known with certainty and,
therefore, remains latent. However, their observed choice behaviour helps make probabilistic statements about the likelihood
of competing consideration sets being their true choice task, with the full probability per participant allocated across all S
classes (i.e., ∑

S
s=1 φs = 1). Therefore, φs can be considered as the unconditional probability associated with observing the

elimination-by-aspects behavioural rule characterised by class s (i.e., the prior likelihood of competing behaviours rules
being their actual behaviour).

2.2.4 Combined model

It is also possible combine the above three specifications that allow for opt-out effects using the following specification:

Pr(yn|Xn,βββ,λ = 1,γ,µ,φφφ) = φs=1

Zn

∏
z=1

(Inizinz)+φs=2

Zn

∏
z=1

exp(βββxniz)
L
∑

l=1
exp(βββxnlz)

+φs=3

Zn

∏
z=1

exp [Ii (βββxniz + γ)+(1− Ii)µϒ ]

exp
(
βββxnI jz + γ

)
+ exp(µϒ )

Pr(cniz|Xnz,βββ,λ = 1,µ)

 . (6)

This specification includes an alternative-specific constant for the opt-out alternative, a hierarchical decision-making
process and the elimination-by-aspects decision rules. We note that the model in Eq. 6 essentially nests the other models,
in the sense that: (i) constraining γ = 0, µ = 1 and φs=3 = 1 reduces to the basic multinomial logit expression in Eq. 2;
(ii) relaxing only the restriction on γ is consistent with the multinomial logit model with an opt-out alternative-specific
constant in Eq. 3; (iii) removing only the constraint on µ so that 0 ≤ µ < 1 produces the nested logit model in Eq. 4;
and, (iv) allowing ∀φs : 0 ≤ φs ≤ 1 leads to the independent availability logit model in Eq. 5. Therefore, in the absence of
information on which of the four specifications (i.e., Eqs. 2–5) is the true specification, the specification in Eq. 6 should
be able to expediently explain the nature of the opt-out effects, albeit with the disadvantage of being less parsimonious.
Moreover, starting with the full model that encompasses all opt-out effects enables backward selection by sequentially
dropping the opt-out effect that is least supported by the data until only significant opt-out effects remain.
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Table 1 Attributes and levels

Attribute Levels (coding)

Efficacy Worst level (0)∗

Best level (1)

Side effects None (0)
Some (1)∗

Monitoring No (0)∗

Yes (1)

Cost e1 (1)∗

e2 (2)
e3 (3)
e4 (4)

∗Baseline level.

3 A practical demonstration

To demonstrate the above modelling approaches to accommodate some of the potential opt-out effects found in DCEs and
the consequences of misspecifying them in the model on welfare and scenario analysis, we provide a practical demonstration
using the R statistics program [25]. Full details and the codes necessary to replicate our results are given in Appendix A. We
use synthetic datasets generated using Monte Carlo experiments, which are especially useful because the true parameters
underlying the data generating process are known. This will allow us to judge model performance in terms of how close the
model estimates are to the true values. For this demonstration, we construct a medication DCE, which is characterised by
three non-cost attributes (each of which has two levels) and a cost attribute (with four levels). The three non-cost attributes
that describe the medication are: efficacy; side effects; and, monitoring. Table 1 presents the attributes and the levels used in
this example.

3.1 Data

For this practical demonstration, we generate three DCE datasets meeting different assumptions. The first DCE dataset
assumes a choice behaviour that assumes everyone considered all alternatives. The model specification used in the data
generating process is based on a the multinomial logit model with an alternative-specific constant that differentiates the opt-
out alternative from non-opt-out alternatives. The second DCE dataset assumes a choice behaviour aligned with the nested
logit specification. It assumes that the unobserved parts of the utility functions for non-opt-out alternatives are correlated
within the same nest, but uncorrelated with the opt-out nest. This specification also assumes that everyone considered all
alternatives. In the third DCE dataset, we assume that some participants ignore certain alternative(s) (which may be due to
genuine preferences, serial non-participation or some other decision-making heuristic). More specifically, we assume there
exist three groups of participants: (i) those who restrict their choice to the opt-out alternative; (ii) those who restrict their
choice to the non-opt-out alternatives; and, (iii) those who do not restrict their choice and consider all alternatives.

For the purposes of this application, for all DCE datasets the true vector of marginal utilities for the four attributes is
specified as βββ=

[
1.5 −0.9 1.1 −0.5

]
. With the aim of generating the three DCE datasets, we choose different values for γ ,

µ and φφφ, as presented in Table 2. For our first DCE dataset, an alternative-specific constant is included, specifically γ = 0.3,
while the values of µ and φs=3 are both fixed to one. The second DCE dataset assumes µ = 0.5, so that there is covariance
between the error terms of the non-opt-out alternatives, whereas γ = 0 and φs=3 = 1. The third DCE dataset is generated on
the basis that some simulated participants reduced the number of alternatives they contemplated. We specify that 30 percent
of participants serially non-participated by choosing the opt-out alternative, 20 percent choose only between the non-opt-out
alternatives, and 50 percent consider all alternatives. The data generation process for this third dataset assumed γ = 0 and
µ = 1.

To demonstrate the effects under different opt-out representations, we consider three different definitions for attribute
levels in the opt-out alternative: (i) where all levels are set to zero; (ii) where the attributes are set to their baseline levels;
and, (iii) where a participant-specific pivot design is used, where, for the sake of illustration, the opt-out levels are randomly
chosen for each participant. As a result, we have a total of nine cases that accommodate for different choice behaviour via

Table 2 Data generating parameters for each treatment

DCE
dataset

Opt-out
alternative-specific

constant (γ)

Degree of independence
among non-opt-out

alternatives (µ)
Consider opt-out

alternative only (φs=1)
Consider non-opt-out

alternatives only (φs=2)
Consider all alternatives

(φs=3)

1 0.3 1.0 0.0 0.0 1.0
2 0.0 0.5 0.0 0.0 1.0
3 0.0 1.0 0.3 0.2 0.5
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Which medication do you prefer?

Medication 1

Best level of efficacy
No side effects
No monitoring

e2
©

Medication 2

Worst level of efficacy
Some side effects

Monitoring
e1
©

Opt-out

The opt-out attributes levels are:
(i) zero;

(ii) the baseline levels; or,
(iii) participant-specific.

©

Figure 2 Illustrative choice task

generated three datasets for each of the three opt-out definitions. We refer to these nine cases as ‘treatments’, in the sense
that each treatment is based on a different data generating process.

For this demonstration, we make use of orthogonal main-effects experimental designs, and define the DCE as having
two non-opt-out alternatives and an opt-out alternative itself.3 An illustrative choice task is presented in Figure 2. We use a
sample of 350 participants who each complete a panel of eight choice tasks, producing 2,800 choice observations for model
estimation. Since idiosyncratic results based a single sample of participants for each treatment can arise, we generate multiple
replications of the experimental design. In total, we generate r = 1,2, . . . ,R = 1,000 replications for the nine treatments.4

The syntax to generate all datasets is given in Box A1 in Appendix A.

3.2 Analysis

For every generated dataset under the three opt-out definitions, we estimate all four models described in Section 2.2. Doing so
allows us to compare the opt-out effects under correctly specified and misspecified cases and to make inferences regarding
the consequences for welfare analysis and choice prediction. The syntax for all candidate models is given in Box A2 in
Appendix A. All models were estimated using the R package maxLik [35]. The syntax for this process is given in Box A3,
which is also provided in Appendix A.

The four candidate models each produce a different insight and interpretation of the opt-out effects. For this reason, a
multimodel inference procedure is recommended so that judgements can be made regarding the relative suitability of each
model accommodating the opt-out effects. Consequently, by regarding all four candidate models, we are in a better position
to identify appropriate assumptions for addressing opt-out effects that are conditional on the data and the set of considered
models. For further details on multimodel inference see, for example, Buckland et al. [36] and Symonds and Moussalli [37],
as well as Layton and Lee [38] and Campbell et al. [39] for their use in stated preference contexts.

As part of the multimodel inference procedure, we derive weights of evidence that each model correctly captures the
choice behaviour assumed in the data generation process of each dataset used. This can be accomplished by calculating
the difference (∆mtr ) between a penalised-likelihood information criterion (IC) value of the best model for treatment t and
replication r, and the equivalent value for the other models estimated in this treatment and replication:

∆mtr = ICmtr − ICmintr , (7a)

where m = 1,2, . . . ,M, with M being the number of models (i.e., M = 4 in our case), and ICmintr is the smallest value of ICmtr

in the model set.5 The term ∆mtr is a calibration of model fit, using the best fitting model as the baseline. The best fitting
model has ∆mtr = 0, and all other models have ∆mtr > 0. Importantly, ∆mtr can be used to calculate a measure to assess the
relative strength of each candidate model. Specifically, a weight of evidence measure, ωmtr , which is a probability scaling of
∆mtr , can be derived using the following widely used expression:

ωmtr =
exp(−0.5∆mtr )

M
∑

m=1
exp(−0.5∆mtr )

, (7b)

where the sum is over all models in the set. The scaling is convenient as 0 < ωmtr < 1 and ∑
M
m=1 ωmtr = 1, meaning that

they can be considered as analogous to the probability that a given model in a given treatment and replication is the best
approximating model, given the data and set of candidate models.

In addition to the weight of evidence measure, we also consider the root-mean-square-errors as indicators of estimation
performance for the four candidate models per treatment. The root-mean-square-error is a measure of the magnitude of the

3While this design ensures that all attribute levels can be estimated independently of each other, we recognise that a more efficient experimental
design could have been used to minimise the variance of the parameters. However, in a Monte Carlo experiment with specified parameters it may
be more appropriate to show that the results stand up in cases where the experimental design is not tailored too closely to the data generating
parameters. Indeed, this would be the case in a real-life empirical application.

4This is sufficient for the purpose at hand since idiosyncratic simulation errors are not found to be large, as will be shown in Tables 3 and 4.
5In this paper, we use the Bayesian information criterion. We derive this for each estimated model m in treatment t and replication r, as follows:
ICmtr = ln(N)Kmtr −2ln

(
ℒ̂mtr

)
, where N is the number of choice observations, ℒ̂mtr is the maximised value of the likelihood function for model

m in treatment t and replication r and Kmtr is the number of estimated parameter associated with this model.
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differences between the estimated parameters and the true parameters used in the data generating process. It represents the
standard deviation of the difference in predicted and actual values over the 1,000 replications, thus giving a single measure
of predictive power for a parameter of interest for all candidate models. It is given by:

RMSEmr =

√
1
R

R

∑
r=1

(τ̂mtr − τt)
2, (8)

where τ̂mtr denotes the estimated value of a parameter of interest retrieved using model m in treatment t and replication r and
τt represents its true value in treatment t.

Our parameters of interest are the marginal willingness to pay estimates and choice predictions. Marginal willingness to
pay estimates are calculated by dividing the parameters of the non-cost attributes by the negative of the parameter of the cost
attribute. In addition to willingness to pay estimates, due to the different opt-out effects and variation in ability of each of our
candidate models to explain these effects, there may be consequences for forecasting the demand for different medications.
We, therefore, use the model estimates to simulate uptake for alternative medications. For this analysis, we consider the
choice shares for the three medication profiles portrayed in Figure 2.

4 Results

4.1 Observed choice shares and consideration set

Before continuing with the estimation results, we first report the observed choices and consideration sets for each dataset
under each opt-out definition. As we generated three datasets under each opt-out definition, we have a total of nine treatments.
The treatments T1, T4, and T7 are the three DCE datasets with different opt-out definitions generated from a multinomial
logit model with an opt-out alternative-specific constant; T2, T5, and T8 are the respective treatments generated based on
a nested logit specification; and T3, T6, and T9 are the treatments based on an independent availability logit specification
that accommodates for alternative processing strategies for the three opt-out definitions. For each of the nine treatments, the
mean and standard deviations of the observed share of choices for each alternative across the 1,000 replications are reported
in Table 3. We first remark the low standard deviations, indicating that the observed proportions of choices tend to be close to
their respective mean and, thus, any idiosyncratic simulation errors are likely to be relatively small. As expected, we see no
notable distinction between the proportion of alternative 1 versus alternative 2 choices regardless of the treatment. However,
the shares for the opt-out alternative differ depending on the treatment. As can be observed, the setting that includes an
opt-out alternative-specific constant is found to have a higher share of opt-out choices as compared to the respective dataset
based on the same opt-out definition but generated on the basis of a nested logit. This is expected, given that the opt-out
constant is specified as being positive (recall γ = 0.3). Nevertheless, the observed share of opt-out choices is highest in the
setting with explicitly defined consideration sets. This is due to the assumptions we use in our data generating process: a
relatively higher proportion of participants are specified to consider only the opt-out alternative compared to those who only
contemplate the non-opt-out alternatives (recall the respective shares of 30 and 20 percent for these behaviours).

Parameter settings aside, we find larger proportions of opt-out choices for the treatments where the attribute levels of
the opt-out alternative are set to zero (i.e., treatments T1–T3). This is followed by the participant-specific (pivot) opt-out

Table 3 Observed shares for each treatment (averaged over 1,000 replications [standard deviations given in parenthesis])
(a) None (all attributes in the opt-out alternative set to zero)

Breakdown by choices (2,800 total choices) Breakdown by consideration set alternatives (350 total participants)
Treatment Alternative 1 Alternative 2 Opt-out alternative Only opt-out Only non-opt-out All

T1 0.273 (0.008) 0.273 (0.007) 0.454 (0.009) 0.001 (0.001) 0.006 (0.004) 0.994 (0.004)
T2 0.299 (0.007) 0.299 (0.007) 0.402 (0.008) 0.000 (0.001) 0.013 (0.006) 0.987 (0.006)
T3 0.251 (0.011) 0.251 (0.012) 0.498 (0.020) 0.300 (0.025) 0.208 (0.021) 0.492 (0.027)

(b) Baseline (all attributes in the opt-out alternative set to the baseline level)

Breakdown by choices (2,800 total choices) Breakdown by consideration set alternatives (350 total participants)
Treatment Alternative 1 Alternative 2 Opt-out alternative Only opt-out Only non-opt-out All

T4 0.397 (0.008) 0.398 (0.008) 0.205 (0.007) 0.000 (0.000) 0.155 (0.019) 0.845 (0.019)
T5 0.413 (0.007) 0.413 (0.007) 0.174 (0.007) 0.000 (0.000) 0.214 (0.022) 0.786 (0.022)
T6 0.309 (0.013) 0.309 (0.013) 0.382 (0.022) 0.300 (0.025) 0.317 (0.025) 0.383 (0.026)

(c) Participant-specific (a pivot design where the opt-out alternative varies by participant)

Breakdown by choices (2,800 total choices) Breakdown by consideration set alternatives (350 total participants)
Treatment Alternative 1 Alternative 2 Opt-out alternative Only opt-out Only non-opt-out All

T7 0.304 (0.009) 0.304 (0.009) 0.392 (0.013) 0.011 (0.006) 0.092 (0.015) 0.897 (0.016)
T8 0.325 (0.009) 0.325 (0.009) 0.350 (0.013) 0.006 (0.004) 0.119 (0.018) 0.875 (0.018)
T9 0.264 (0.012) 0.264 (0.012) 0.472 (0.021) 0.303 (0.024) 0.264 (0.023) 0.433 (0.026)

The breakdown by choices is a summary of the proportion of choices for each alternatives, whereas the breakdown by consideration set alternatives is a summary of the
simulated share of participants’ choices that comply with each processing rule.



Including opt-out options in discrete choice experiments 9

treatments (i.e., treatments T7–T9), and the treatments where the attribute levels are set to their baseline (i.e., treatments T4–
T6). However, we, once more, emphasise that these differences are context-specific and are driven by the data generating
assumptions.

Table 3 also reports the breakdown of participants with respect to the shares of alternatives included in their consideration
set.6 Irrespective of the definitions used for the opt-out alternative, settings in which the deterministic consideration set is
assumed (i.e., all treatments aside from T3, T6 and T9) are, as expected, observed as having the highest share of participants
who considered all three alternatives. Nonetheless, there are notable differences when we compare the shares across the
opt-out definitions: a higher share of participants are identified as having the deterministic consideration set that includes all
three alternatives when the opt-out attribute levels are set to the baseline (i.e., treatments T1 and T2), compared to where
the levels are set to zero (i.e., treatments T4 and T5) and participant-specific values (i.e., treatments T7 and T8). We, again,
accentuate that this is a consequence of the assumptions we use in data generation.

All else being equal, the most obvious difference in observed elimination-by-aspect behaviour and serial non-participation
is in settings where these behaviours form part of the data generating process. The dispersion of the observed serial non-
participation behaviour is also low and very closely reflects the proportion used in generating the data. The importance of this
result should not be understated, since it signals that a straightforward non-parametric comparison of the chosen alternatives
can give a clear insight into the choices that make up the consideration set (e.g., whether there exists any systematic choice
behaviour relating to the opt-out alternative). Crucially, this can be used to inform the decision on the models to be included
within the candidate set. We also find the shares of participants identified as having exclusively considered the non-opt-
out alternatives are reasonably consistent with the data generation process. This finding is strongest for the first opt-out
definition, which is, once more, an artefact of the data generating process. For the second opt-out definition, where the non-
cost attributes for the opt-out alternative are set at their inferior level, it is not surprising to find fewer simulated choices for
the opt-out alternative. But more importantly, this has given rise to the upwardly biased share of participants identified as
having considered only between the non-opt-out alternatives in treatments T4 and T5. Therefore, while a simple comparison
of chosen alternatives may be a useful starting point to garner some rudimentary intuition about the processing strategies,
this highlights that its ability to do so depends on the true data generating process and the empirical setting. Model estimation
should give more definitive insight, which we now turn to.

4.2 Estimation results

The repercussions of misspecified opt-out effects are best understood by assessing the ability of different modelling ap-
proaches to explain the true opt-out effects. The weights of evidence and the root-mean-square performance indicators will
help in this regard.

4.2.1 Multimodel inference

In Table 4, we report the mean of the weight of evidence measure, ωmtr , over the 1,000 replications for each model spec-
ification and each definition. Recall that these values sum to 1 over the four models in the candidate set and they can be
interpreted as the probability of each model having the most appropriate specification to account for the opt-out effects (con-
ditional on the set of models included in the candidate set). The larger the value, the more confidence we have that the model
is the best approximating model.

Our first observation is that, as expected, the most probable model in each treatment complies with the data generating
process. For instance, treatments generated on the basis of a multinomial logit with an opt-out alternative-specific constant
are found to have the highest average weight of evidence for this model (i.e., 82, 96 and 100 percent for treatments T1, T4
and T7 respectively). Treatments T2 and T8, which are generated based on a nested logit, are also found to have the highest
weight of evidence for the nested logit model. However, this is not the case for the opt-out definition using the baseline
levels of attributes in treatment T5, which, related to an earlier observation, stems from the inferior levels representing the
opt-out alternative (i.e., all else being equal, the tendency to choose a non-opt-out alternative is, therefore, higher). A further
interesting result in Table 4 is that neither the multinomial logit with an opt-out alternative-specific constant specification nor
the nested logit model perform well when participants do not consider all alternatives. In fact, the weights of evidence for
these two models in their corresponding treatments are effectively zero. This would suggest that we could tentatively omit
these models in cases where there is a strong belief (perhaps informed by a non-parametric comparison of chosen alternatives
and/or by follow-up statements of information processing strategies) of serial non-participation or semi-compensatory choice
behaviour.

A critical insight afforded by this multimodel inference is the fact that there are instances where the misspecified models
also form part of the confidence set of models (i.e., the models that represent the majority of evidence). This reinforces
the need to evaluate a range of opt-out effects and to assess the quality of the predicted opt-out effect under each model,
relative to each of the other models. Therefore, using only a single model to base inferences on opt-out effects may not
be recommended. This is especially the case in treatment T5, where the combined model is the best approximating model.

6As noted when describing the independent availability logit model in §2.2.3, the alternatives taken into account by a (real or simulated) participant
cannot be established with certainty. For the sake of comparison, we assume an alternative is deemed to be not in a participant’s consideration set
if they never choose it in any of their eight choices.
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Table 4 Weight of evidence (averaged over 1,000 replications [standard deviations given in parenthesis])
(a) None (all attributes in the opt-out alternative set to zero)

Treatment MNL with ASC NL IAL Combined

T1 0.822 (0.213) 0.175 (0.211) 0.003 (0.014) 0.000 (0.000)
T2 0.000 (0.000) 1.000 (0.001) 0.000 (0.000) 0.000 (0.001)
T3 0.000 (0.000) 0.000 (0.000) 0.998 (0.008) 0.002 (0.008)

(b) Baseline (all attributes in the opt-out alternative set to the baseline level)

Treatment MNL with ASC NL IAL Combined

T4 0.960 (0.102) 0.039 (0.101) 0.000 (0.001) 0.000 (0.000)
T5 0.007 (0.058) 0.187 (0.322) 0.000 (0.000) 0.806 (0.324)
T6 0.000 (0.000) 0.000 (0.000) 0.998 (0.009) 0.002 (0.009)

(c) Participant-specific (a pivot design where the opt-out alternative varies by participant)

Treatment MNL with ASC NL IAL Combined

T7 1.000 (0.002) 0.000 (0.002) 0.000 (0.000) 0.000 (0.000)
T8 0.000 (0.004) 0.998 (0.023) 0.000 (0.000) 0.002 (0.023)
T9 0.000 (0.000) 0.000 (0.000) 0.997 (0.028) 0.003 (0.028)

This table is a summary of the weight of evidence obtained for each candidate model by treatment, which can be interpreted as the probability that a given model is the
best approximating model (given the data and set of candidate models) in the respective treatment.

Nevertheless, it is important to be mindful that an incorrect model specification can lead to erroneous interpretation. However,
as the most inclusive model for all choice behaviours assumed in the generated datasets, it offers the potential to backwardly
eliminate the opt-out effects that are not supported by the data.

4.2.2 Estimation performance

As we know the true parameters, we can assess how each of these candidate models closely predict the true values. We use
the root-mean-square-error to measure the performance of the models estimating marginal willingness to pay estimates and
choice predictions, which are, respectively, given in Tables 5 and 6.

Focusing first on the magnitudes of the errors in predictions of marginal willingness to pay in Table 5, we find some key
differences across the four models in the candidate set. As anticipated, we observe that the model that aligns with the data
generating process, on average, provides the most precise estimates of marginal willingness to pay. Of especial importance,
however, is the finding that the root-mean-square-errors relating to the combined model are qualitatively similar to those
produced by the true model specification. In fact, in many instances the combined model produces lower root-mean-square-
errors relative to those of other models. Crucially, this indicates that the average performance of the combined model in terms
of predicting marginal willingness to pay may even be superior to the average performance of the true model. This gives
rise to a dilemma relating to parsimony: while from Table 4, the combined model is generally less parsimonious, it produces
relatively consistent (and, at times, more consistent) estimates of marginal willingness to pay. Non-parsimonious models
obviously have the potential to overfit the data and lead to misguided judgements, but in this case, since the combined model
effectively nests the other models, any loss of parsimony may be offset by the increased predictive performance.

A common goal of DCEs in health and other areas of applied economics is to predict demand and market shares. For
this reason, we consider the three medication scenarios presented in Figure 2, and for every estimated model we retrieve
the predicted choice share for each alternative. In Table 6, we present the root-mean-square-errors of these predictions
by treatment and model specification. The results show that the systematic errors in prediction vary by data generating
process, but, more importantly, also by the model specification. Like what was observed for the marginal willingness to
pay predictions, we find that misspecified models (with the exception of the combined model) produce, on average, less
accurate predictions of the choice shares. We, again, find that the models that are consistent with the data generating process
generally produce the most precise choice forecasts, on average. However, those produced, on average, by the combined
model specification are not found to be materially different. As a matter of fact, in many instances the combined model, on
average, leads to more accurate predictions of the true choice shares. This further highlights the possible advantages of more
flexible specifications as they may offer potentially superior predictive power. However, it again raises the trade-off between
the desire for parsimony and prediction accuracy as well as the distinction between explaining versus predicting.

5 Concluding remarks

While the necessity for including an opt-out option in discrete choice experiments (DCEs) is contingent on the objectives of
the study and is context dependent [5], its inclusion is, nevertheless, widespread practice, and also recommended [3, 6–8]. It
is well known and documented within the DCE literature that the propensity of participants choosing the opt-out alternative
is often explained by many factors [11–13]. However, it is not always obvious how to accommodate it. This stems from the
myriad of potential explanations for this phenomenon, and the inability which (if any) of these potential explanations is at
play. In this paper, we provide practical guidance on how to accommodate a range of opt-out effects in various formats and
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Table 5 Performance indicator of estimation performance for marginal willingness to pay (root-mean-square-error)
(a) None (all attributes in the opt-out alternative set to zero)

Treatment Model Efficacy Side effects Monitoring

T1

MNL with ASC 0.225 0.189 0.212
NL 0.371 0.163 0.412
IAL 0.396 0.163 0.397
Combined 0.224 0.188 0.220

T2

MNL with ASC 0.406 0.322 0.822
NL 0.209 0.157 0.232
IAL 0.197 0.269 0.228
Combined 0.191 0.148 0.230

T3

MNL with ASC 0.530 0.315 0.850
NL 0.706 0.168 0.858
IAL 0.174 0.201 0.159
Combined 0.266 0.202 0.271

(b) Baseline (all attributes in the opt-out alternative set to the baseline level)

Treatment Model Efficacy Side effects Monitoring

T4

MNL with ASC 0.217 0.167 0.210
NL 0.441 0.279 0.444
IAL 0.438 0.293 0.418
Combined 0.218 0.165 0.223

T5

MNL with ASC 0.497 0.269 0.909
NL 0.298 0.376 0.253
IAL 0.309 0.596 0.149
Combined 0.195 0.134 0.243

T6

MNL with ASC 0.644 0.470 1.097
NL 0.328 0.231 0.341
IAL 0.229 0.180 0.243
Combined 0.263 0.196 0.275

(c) Participant-specific (a pivot design where the opt-out alternative varies by participant)

Treatment Model Efficacy Side effects Monitoring

T7

MNL with ASC 0.178 0.142 0.165
NL 0.204 0.160 0.178
IAL 0.179 0.149 0.174
Combined 0.177 0.142 0.167

T8

MNL with ASC 0.284 0.166 0.581
NL 0.178 0.128 0.314
IAL 0.282 0.162 0.575
Combined 0.217 0.136 0.364

T9

MNL with ASC 0.784 0.471 0.992
NL 1.413 0.508 1.467
IAL 0.234 0.179 0.224
Combined 0.232 0.178 0.224

This table gives a comparison of a measure of the magnitude of the differences between the estimated values of marginal willingness to pay and the true values of
marginal willingness to pay used in the data generating process by candidate model and treatment.

show the consequences of addressing these effects for marginal willingness to pay estimation and scenario predictions using
simulated datasets with correctly specified and misspecified discrete choice models.

We focus on three common definitions for the opt-out alternative used in DCE studies. The first definition is the one where
the attribute levels are set to zero (i.e., “none of them”). The second definition uses attributes that are set to their baseline
level. The final definition uses participant-specific baseline levels (i.e., a pivot design). To account for the range of opt-out
effects that might be present in DCE data, for each opt-out definition, we generate three DCE datasets based on different
assumptions using Monte Carlo simulation. The first dataset assumes an opt-out effect which is explained by an alternative-
specific constant. The second dataset assumes correlation between the non-opt-out alternatives that can be accommodated via
a nested logit specification. The third dataset assumes a share of participants eliminate the opt-out alternative or non-opt-out
alternatives from their consideration set. We estimate three models corresponding to these datasets for each opt-out definition,
and a combined model that essentially nests the specifications considered in the first three models. We subsequently conduct
a frequentist-based multimodel inference approach using information criteria to derive weights of evidence for each model.
To help judge the performance of estimations in terms of predicting the true values, we calculate root-mean-square-errors for
both welfare estimates and choice predictions. We present our code written in the R statistics program to encourage others
to explore these opt-out effects in their own data.

Our findings in this practical demonstration suggest a number of key recommendations for DCE practitioners interested
in exploring opt-out effects. Before any model estimation, we suggest a straightforward exploration of the choice shares
to determine if a subset of participants consistently (or predominately) chose the opt-out alternative or the non-opt-out
alternatives. Based on what is observed, it may be possible to refine the candidacy set of models. Indeed, models should
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Table 6 Performance indicator of estimation performance for choice prediction (root-mean-square-error)
(a) None (all attributes in the opt-out alternative set to zero)

Treatment Model Medication 1 Medication 2 Opt-out

T1

MNL with ASC 0.024 0.017 0.014
NL 0.045 0.026 0.025
IAL 0.038 0.018 0.029
Combined 0.026 0.019 0.014

T2

MNL with ASC 0.082 0.160 0.082
NL 0.057 0.035 0.079
IAL 0.036 0.148 0.118
Combined 0.083 0.029 0.089

T3

MNL with ASC 0.071 0.064 0.024
NL 0.070 0.048 0.029
IAL 0.023 0.017 0.021
Combined 0.027 0.020 0.022

(b) Baseline (all attributes in the opt-out alternative set to the baseline level)

Treatment Model Medication 1 Medication 2 Opt-out

T4

MNL with ASC 0.026 0.021 0.008
NL 0.028 0.026 0.015
IAL 0.027 0.029 0.017
Combined 0.028 0.025 0.008

T5

MNL with ASC 0.136 0.184 0.050
NL 0.044 0.080 0.046
IAL 0.149 0.217 0.069
Combined 0.048 0.034 0.039

T6

MNL with ASC 0.095 0.101 0.025
NL 0.036 0.027 0.032
IAL 0.027 0.021 0.023
Combined 0.029 0.023 0.023

(c) Participant-specific (a pivot design where the opt-out alternative varies by participant)

Treatment Model Medication 1 Medication 2 Opt-out

T7

MNL with ASC 0.018 0.015 0.009
NL 0.050 0.018 0.044
IAL 0.046 0.018 0.051
Combined 0.019 0.016 0.009

T8

MNL with ASC 0.078 0.134 0.058
NL 0.036 0.069 0.038
IAL 0.073 0.134 0.063
Combined 0.031 0.068 0.046

T9

MNL with ASC 0.072 0.071 0.023
NL 0.033 0.033 0.020
IAL 0.022 0.016 0.021
Combined 0.023 0.018 0.022

This gives a comparison of a measure of the magnitude of the differences between the predicted choice shares and the true choice shares used in the data generating
process by candidate model and treatment.

be linked with very specific and testable hypothesis and/or driven by prior beliefs of what is driving the opt-out effect(s) in
the context studied. In the context of opt-out effects, discrete choice models should, as far as possible, distinguish between
situations where participants have made genuine opt-out choices and where they exhibit behaviour beyond the theory of
rational choice. Indeed, there may be potential confounding between different opt-out effects. For this reason, there may be
advantages in choosing econometric specifications that can simultaneously explain multiple opt-out effects, and, if necessary,
backwardly eliminate the opt-out effects that are not supported by the data. Focusing solely on one opt-out effect may explain
only part of the story and, crucially, could lead to biased inferences regarding the opt-out effects. Yet, there is the need to be
mindful of the proliferation of parameters and, therefore, loss of parsimony. While a more comprehensive model will ensure
the DCE data is fitted well, it comes at the risk of being tailored too closely to the sample data, which compromises the ability
to generalise the model beyond the existing dataset. This is especially important when the aim is to use the DCE results to
derive some aggregation measure, such as the average marginal willingness to pay within a population or the average change
in demand in response to a change in a medication attribute. While parsimony is an important consideration, it may not always
result in the best predictive performance (for both marginal willingness to pay and choice prediction). For this reason, there
may be other considerations aside from parsimony. Given the range of possible opt-out effects and the fact that these are likely
to be heterogeneous across the population it might be unrealistic to expect accurate predictions from simpler (parsimonious)
models. There is, of course, a distinction between estimation and prediction and there may be a need to consider different
modelling assumptions for each. But additional factors to consider when deciding on model specification include plausibility,
consistency with established opt-out effects and behavioral phenomena, and in most practical settings there is a need to
ensure that the model results are understandable to a non-technical entity. Nevertheless, due to the inability to know why
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participants chose, or did not choose, opt-out alternatives in DCEs, it is difficult to know which model specification(s) to
use. Not surprisingly, many different model specifications have been offered in the DCE literature. However, we suggest
that there is no unique best way to analyse DCE data. We do not wish to give the impression that any of the models used
in this paper will offer the best solution for every DCE dataset. Indeed, a familiar aphorism among econometricians is
that “all models are wrong”. For this reason, we encourage researchers to consider several models and subsequently, apply
multimodel inference and embrace model averaging. By doing so, different hypotheses of opt-out effects can be explained
by several models, which can then be ranked and weighted to provide a quantitative measure of the relative support for each
competing hypothesis.

Regarding the modelling frameworks presented here, for illustrative purposes, we have considered only four models. Of
course, there is scope for further specifications and formats, such as the dual response format, where participants are first
presented with a forced choice and then asked a follow up question on whether or not they would be choose the option
or opt-out (e.g., see Brazell et al. [23] and Schlereth and Skiera [13]). We also acknowledge that our results are based on
Monte Carlo experiments and, due to the assumptions made when generating the datasets, they may not apply in all contexts.
However, we find qualitatively similar results in a range of different settings. Indeed, we encourage others to utilise the R
code to investigate the sensitivity of our results to sample size, experimental design properties as well as the number of
alternatives, attributes and choice tasks. But, more importantly, we hope that others make use of the code to explore opt-out
effects present in their own data which will contribute towards a better understanding of opt-out effects in DCEs.
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Appendix A: R code to generate the data and estimate the opt-out models

This appendix presents the code written in the R statistics program [25] needed to generate the DCE datasets, estimate the
models, and conduct the Monte Carlo analysis presented in this paper. It is intended to provide a resource for practitioners
who are currently using, or considering to use, DCEs and are keen to explore potential opt-out effects present in their own
data. Indeed, while the code relates to the analysis presented in this paper, it can easily be adapted to suit other DCE datasets.

The syntax to generate all DCE datasets is given in Box A1. We define the generate.choices function, which has
three arguments: the random number generator is controlled using the argument random.seed; the DCE dataset of interest
(i.e., a value 1–3 to generate data to mirror the multinomial logit model with an opt-out constant, nested logit model and
independent availability logit, respectively) is specified using the argument dataset; and, the opt-out definition (i.e., a
value 1–3 for none, baseline and participant-specific, respectively) is defined by using the argument optout.defn.7 For
the purposes of illustration, we use an orthogonal main-effects experimental design. The generate.choices function
returns an object that is a list that includes random.seed as well as the following components: n.tasks for the number
of experimentally designed choice tasks per participant; alt.1, alt.2 and alt.3, which give the matrix of attribute
levels in first, second and third alternative, respectively (alt.3 is the opt-out alternative); choice, which is the vector of
simulated choice outcomes; and, parameters, which gives the dataset-specific vector of parameters used to generate the
data.

The syntax for our candidate models is given in Box A2. The first of these models, mnlasc.model, conforms with
the multinomial logit model with an opt-out alternative-specific constant, as in Eq. 3. A nested logit model, as described in

7Within the generate.choices function we use the package fExtremes [40] to generate random errors draws from the type I extreme value
distribution and the package support.CEs [41] for generating the experimental design generated.

Box A1 Function to generate the synthetic DCE datasets

## function for generating a synthetic DCE dataset
generate.choices <- function(random.seed, dataset, optout.defn) {

treatment.parameters <- true.parameters
if (treatment %in% c(2:3, 5:6, 8:9)) {

treatment.parameters[5] = 0
}
if (treatment %in% c(1, 3, 4, 6, 7, 9)) {

treatment.parameters[6] = 1
}
if (treatment %in% c(1:2, 4:5, 7:8)) {

treatment.parameters[7:9] = c(0, 0, 1)
}
## package for generating generalized extreme value distributions
require(support.CEs)
## generate a L^MA experimental design
exp.design <- Lma.design(attribute.names = attributes, nalternatives = 2, nblocks = 2, row.renames = FALSE, seed = random.seed)
n.tasks <- exp.design$design.information$nquestions
n.blocks <- exp.design$design.information$nblocks
alt.1 <- matrix(as.numeric(as.matrix(exp.design$alternatives$alt.1[rep(1:(n.tasks * n.blocks), N/n.blocks), -c(1:3)])), ncol = 4)
alt.2 <- matrix(as.numeric(as.matrix(exp.design$alternatives$alt.2[rep(1:(n.tasks * n.blocks), N/n.blocks), -c(1:3)])), ncol = 4)
## generate treatment opt-out alternative (alternative 3)
if (treatment %in% 1:3) {

alt.3 <- matrix(0, nrow = N * n.tasks, ncol = 4)
}
if (treatment %in% 4:6) {

alt.3 <- matrix(rep(c(0, 1, 0, attributes$Cost[1]), N * n.tasks), ncol = 4, byrow = TRUE)
}
if (treatment %in% 7:9) {

set.seed(random.seed + 1)
alt.3 <- cbind(rep(sample(attributes$Efficacy, N, replace = TRUE), each = n.tasks), rep(sample(attributes$Effects, N, replace = TRUE), each = n.tasks),
rep(sample(attributes$Monitoring, N, replace = TRUE), each = n.tasks), rep(sample(attributes$Cost, N, replace = TRUE), each = n.tasks))

}
## generate participant-specific deviate for processing rules - U(0,1)
set.seed(random.seed + 2)
processing.deviate <- rep(runif(N), each = n.tasks)
processing.strategy.1 <- ifelse(processing.deviate <= treatment.parameters[7], 1, 0)
processing.strategy.2 <- ifelse(processing.deviate > treatment.parameters[7] & processing.deviate <= sum(treatment.parameters[7:8]), 1, 0)
## multiplying indicator variable with minus infinity (set here as log(1e-100))
ignore.alt1 <- log(1e-100) * processing.strategy.1
ignore.alt2 <- log(1e-100) * processing.strategy.1
ignore.alt3 <- log(1e-100) * processing.strategy.2
## generate observable component of utility
v1 <- alt.1 %*% treatment.parameters[1:4] + ignore.alt1
v2 <- alt.2 %*% treatment.parameters[1:4] + ignore.alt2
v3 <- alt.3 %*% treatment.parameters[1:4] + treatment.parameters[5] + ignore.alt3
## package for generating generalized extreme value distributions
require(fExtremes)
if (treatment %in% c(2, 5, 8)) {

set.seed(random.seed + 3)
error.nonSQ.nest <- rgev(N * n.tasks, xi = 0, mu = 0, beta = sqrt(1 - treatment.parameters[6]^2))
set.seed(random.seed + 4)
error1 <- rgev(N * n.tasks, xi = 0, mu = 0, beta = treatment.parameters[6]) + error.nonSQ.nest
set.seed(random.seed + 5)
error2 <- rgev(N * n.tasks, xi = 0, mu = 0, beta = treatment.parameters[6]) + error.nonSQ.nest

}
if (treatment %in% c(1, 3:4, 6:7, 9)) {

set.seed(random.seed + 3)
error1 <- rgev(N * n.tasks, xi = 0, mu = 0, beta = 1)
set.seed(random.seed + 4)
error2 <- rgev(N * n.tasks, xi = 0, mu = 0, beta = 1)

}
set.seed(random.seed + 6)
error3 <- rgev(N * n.tasks, xi = 0, mu = 0, beta = 1)
## utility
utility1 <- v1 + error1
utility2 <- v2 + error2
utility3 <- v3 + error3
## choice variable
choice <- apply(cbind(utility1, utility2, utility3), 1, which.max)
list(random.seed = random.seed, n.tasks = n.tasks, alt.1 = alt.1, alt.2 = alt.2, alt.3 = alt.3, choice = choice, parameters = treatment.parameters)

}
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Box A2 Functions for the candidate models

## function for multinomial logit model with alternative-specific constant
mnlasc.model <- function(coeff) {

util1 <- choice.data$alt.1 %*% coeff[1:4]
util2 <- choice.data$alt.2 %*% coeff[1:4]
util3 <- choice.data$alt.3 %*% coeff[1:4] + coeff[5]
choice.prob <- (exp(util1) * (choice.data$choice == 1) + exp(util2) * (choice.data$choice == 2) + exp(util3) * (choice.data$choice == 3))/(exp(util1) +
exp(util2) + exp(util3))

choice.prob.prod <- apply(matrix(choice.prob, nrow = n.tasks), 2, prod)
log(choice.prob.prod)

}
## function for nested logit model
nested.model <- function(coeff) {
util1 <- choice.data$alt.1 %*% coeff[1:4]
util2 <- choice.data$alt.2 %*% coeff[1:4]
util3 <- choice.data$alt.3 %*% coeff[1:4]
iv <- log(apply(exp(cbind(util1, util2)), 1, sum))
mu <- 1/(1 + abs(coeff[5]))
marginal.probs <- exp(cbind(mu * iv, util3))/apply(exp(cbind(mu * iv, util3)), 1, sum)
conditional.probs <- cbind(exp(cbind(util1, util2)/mu)/apply(exp(cbind(util1, util2)/mu), 1, sum), 1)
choice.prob <- conditional.probs[, 1] * marginal.probs[, 1] * (choice.data$choice == 1) + conditional.probs[, 2] * marginal.probs[, 1] *
(choice.data$choice == 2) + conditional.probs[, 3] * marginal.probs[, 2] * (choice.data$choice == 3)

choice.prob.prod <- apply(matrix(choice.prob, nrow = n.tasks), 2, prod)
log(choice.prob.prod)

}
## function for independent availability logit model
ial.model <- function(coeff) {
util1 <- choice.data$alt.1 %*% coeff[1:4]
util2 <- choice.data$alt.2 %*% coeff[1:4]
util3 <- choice.data$alt.3 %*% coeff[1:4]
prob.alts <- exp(c(0, coeff[5:6]))/sum(exp(c(0, coeff[5:6])))
choice.prob.prod1 <- apply(matrix(ifelse(choice.data$choice == 3, 1, 0), nrow = n.tasks), 2, prod)
choice.prob2 <- (exp(util1) * (choice.data$choice == 1) + exp(util2) * (choice.data$choice == 2))/(exp(util1) + exp(util2))
choice.prob.prod2 <- apply(matrix(choice.prob2, nrow = n.tasks), 2, prod)
choice.prob3 <- (exp(util1) * (choice.data$choice == 1) + exp(util2) * (choice.data$choice == 2) + exp(util3) * (choice.data$choice == 3))/(exp(util1) +

exp(util2) + exp(util3))
choice.prob.prod3 <- apply(matrix(choice.prob3, nrow = n.tasks), 2, prod)
choice.prob.prod <- prob.alts %*% rbind(choice.prob.prod1, choice.prob.prod2, choice.prob.prod3)
log(choice.prob.prod)

}
## function for combined model
combined.model <- function(coeff) {
util1 <- choice.data$alt.1 %*% coeff[1:4]
util2 <- choice.data$alt.2 %*% coeff[1:4]
util3 <- choice.data$alt.3 %*% coeff[1:4] + coeff[5]
iv <- log(apply(exp(cbind(util1, util2)), 1, sum))
mu <- 1/(1 + abs(coeff[6]))
prob.alts <- exp(c(0, coeff[7:8]))/sum(exp(c(0, coeff[7:8])))
marginal.probs <- exp(cbind(mu * iv, util3))/apply(exp(cbind(mu * iv, util3)), 1, sum)
conditional.probs <- cbind(exp(cbind(util1, util2)/mu)/apply(exp(cbind(util1, util2)/mu), 1, sum), 1)
choice.prob.prod1 <- apply(matrix(ifelse(choice.data$choice == 3, 1, 0), nrow = n.tasks), 2, prod)
choice.prob2 <- (exp(util1) * (choice.data$choice == 1) + exp(util2) * (choice.data$choice == 2))/(exp(util1) + exp(util2))
choice.prob.prod2 <- apply(matrix(choice.prob2, nrow = n.tasks), 2, prod)
choice.prob3 <- conditional.probs[, 1] * marginal.probs[, 1] * (choice.data$choice == 1) + conditional.probs[, 2] * marginal.probs[, 1] *
(choice.data$choice == 2) + conditional.probs[, 3] * marginal.probs[, 2] * (choice.data$choice == 3)

choice.prob.prod3 <- apply(matrix(choice.prob3, nrow = n.tasks), 2, prod)
choice.prob.prod <- prob.alts %*% rbind(choice.prob.prod1, choice.prob.prod2, choice.prob.prod3)
log(choice.prob.prod)

}

Eq. 4, is expressed in the function nested.model. The function ial.model is an independent availability logit model,
as expressed in Eq. 5. Finally, combined.model is the combined specification, as outlined in Eq. 6. Each model function
has the argument coeff, which is the vector of unknown parameters that maximises the log-likelihood.

Before generating the synthetic DCE datasets, in Box A3, we specify the attributes and their levels, the true parameters,
the number of synthetic participants, as well as the number of replications. For readers wishing to execute the syntax for test-

Box A3 Model estimation for each DCE dataset

## define the attributes
attributes <- list(Efficacy = 0:1, Effects = 0:1, Monitoring = 0:1, Cost = 1:4)
## specify true parameters for simulation
true.parameters <- c(1.5, -0.9, 1.1, -0.5, 0.3, 0.5, 0.3, 0.2, 0.5)
names(true.parameters) <- c("beta.Efficacy", "beta.Effects", "beta.Monitoring", "beta.Cost", "gamma", "mu", "phi.c1", "phi.c2", "phi.c3")
## number of synthetic participants
N <- 350
## number of replications
n.replications <- 1000
## package for maximum likelihood estimation
require(maxLik)
## create an array to store the results
results <- array(0, c(11, 4, 3, 3, n.replications))
## generation of choices and model estimation for each treatment and replication
for (r in 1:n.replications) {
for (d in 1:3) {

for (f in 1:3) {
treatment <- (d - 1) * 3 + f
## generate choices
choice.data <- generate.choices(random.seed = r, dataset = d, optout.defn = f)
n.tasks <- choice.data$n.tasks
## estimate the candidate models
mnlasc.result <- maxBFGS(mnlasc.model, start = choice.data$parameters[1:5])
nested.result <- maxBFGS(nested.model, start = c(choice.data$parameters[1:4], (1 - choice.data$parameters[6])/true.parameters[6]))
ial.result <- maxBFGS(ial.model, start = c(choice.data$parameters[1:4], ifelse(d <= 2, 0, -0.4), ifelse(d <= 2, 10, 0.5)))
combined.result <- maxBFGS(combined.model, start = c(choice.data$parameters[1:5], (1 - choice.data$parameters[6])/true.parameters[6],

ifelse(d <= 2, 0, -0.4), ifelse(d <= 2, 10, 0.5)))
## store the parameter estimates
results[c(1:7, 9), 1, d, f, r] <- c(mnlasc.result$maximum, 5, mnlasc.result$estimate, 1)
results[c(1:6, 8:9), 2, d, f, r] <- c(nested.result$maximum, 5, nested.result$estimate[1:4], 1/(1 + abs(nested.result$estimate[5])),1)
results[c(1:6, 9:11), 3, d, f, r] <- c(ial.result$maximum, 6, ial.result$estimate[1:4], exp(c(0, ial.result$estimate[5:6]))/
sum(exp(c(0, ial.result$estimate[5:6]))))

results[, 4, d, f, r] <- c(combined.result$maximum, 8, combined.result$estimate[1:5], 1/(1 + abs(combined.result$estimate[6])),
exp(c(0, combined.result$estimate[7:8]))/sum(exp(c(0, combined.result$estimate[7:8]))))

}
}

}
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ing purposes, we note that smaller values for N and, especially, n.replications will significantly reduce computational
time.8

For each replication, we retrieve the parameter estimates that maximise the log-likelihood of our candidate models for ev-
ery treatment (multiple replications can be achieved by varying the argument random.seed in the generate.choices
function). The syntax for this process is also given in Box A3.9

This syntax produces a five-dimensional array called results with eleven rows to store the log-likelihood, number of
parameters and the estimated parameters, four columns (one for each candidate model), three slices (one for each of the DCE
data generation process) in the third dimension, three slices (one for each of the opt-out definition) in the fourth dimension
and one thousand slices (one for each replication) in the fifth dimension of the array. For example results[,4,2,3,17]
contains the log-likelihood, number of parameters and estimated parameters for the combined model for the nested logit DCE
dataset with participant-specific opt-out levels in the seventeenth replication.

8For those interested in Since the experimental design is specified to consist of two blocks, N needs to be an even number.
9All models are estimated using the package maxLik [35]. It is important to be mindful of the vulnerability to local maxima meaning that there
can be uncertainty that some of these models reach a unique maximum. Thus, to reduce the possibility of reaching a local maximum, rather than
a global maximum, it is advisable to start the estimation iterations from a variety of random starting points. We did this for the analysis presented
in the paper, however given our desire to keep the syntax as succinct as possible to avoid confusion, this process is not shown in Box A3. This
said, our own evaluations reveal that any susceptibility to local maxima of these models across all treatments does not appear to influence the main
results.
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