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a b s t r a c t

Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and
impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive
impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had
been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantifiedWMH
on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of
late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with
lower late life general cognitive ability (b ¼ �0.14, p < 0.01) and processing speed (b ¼ �0.19, p < 0.001).
WMH were also associated independently with lower age 11 IQ (b ¼ �0.08, p < 0.05) and hypertension. In
conclusion, having more WMH is significantly associated with lower cognitive ability, after accounting for
prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth
leads to increasing brain damage with aging is important for future successful cognitive aging.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.
1. Introduction seen with WMH (Almkvist et al., 1992) is caused by the WMH and
White matter hyperintensities (WMH) are a common sign of
cerebrovascular disease visible on brain imaging in older people
(O’Sullivan, 2008). WMH contribute substantially to loss of inde-
pendence at older ages through a 3-fold increased risk of stroke and
a 2-fold increased risk of dementia (Debette and Markus, 2010); in
addition, WMH accelerate aging-related cognitive decline (Debette
andMarkus, 2010; O’Sullivan, 2008; Schmidt et al., 2007). Although
previously regarded as clinically “silent,”WMH are now recognized
to be associated with subtle neurological symptoms (Haley et al.,
2009) and subjective awareness of cognitive decline (Silbert et al.,
2009). It is generally considered that the cognitive impairment
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not related to premorbid cognitive ability.
Childhood intelligence is the strongest predictor of late-life

cognitive ability (Deary et al., 2003) and may protect against the
effects of cognitive aging (Stern, 2009). Higher childhood intelli-
gence is also associated with many health outcomes across the life
course, including a lower risk of vascular dementia (Deary et al.,
2009, 2010b). Similarly, higher educational attainment is also
associated with decreased incidence of dementia (Dufouil et al.,
2003), an association that is as yet unexplained. Early-life cogni-
tive ability might therefore influence the risk of developing cere-
brovascular disease including WMH.

Many longitudinal studies show that WMH progression is
associated with worsening cognition at older ages and that WMH
progression is worst in those with more WMH at inception
(Bartres-Faz et al., 2001; Debette and Markus, 2010; Schmidt et al.,
2007) (we summarize other longitudinal studies not included in
those reviews in Supplementary Table 1). Most studies adjusted for
educational level and other confounds (Bartres-Faz et al., 2001;
Schmidt et al., 2007) (Supplementary Table 1), but most did not
examine whether prior cognitive ability or educational level
modified the longitudinal WMHecognition association or was
associated with cross-sectional WMH burden. In 1 study of 800
 license.
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individuals, the association between WMH and impaired cognition
in older age was strongest in those with lower educational level
(Dufouil et al., 2003). In another study, increased duration of edu-
cation was associated with less executive dysfunction, but not with
WMH severity, in 475 patients with stroke (Ojala-Oksala et al.,
2012); however, this study may have been underpowered to
detect any educationeWMH burden association.

A fewstudies ofWMHandcognitionwere able to control for prior
cognitive ability using a validated mental test obtained in youth
(Deary et al., 2003), but these were modestly powered, given the
expected effect sizes (e.g., about 100 individuals of nearly 80 years of
age (Deary et al., 2003; Murray et al., 2012), or 233 to 249 partici-
pants nearly 70 years of age (Murray et al., 2011, 2012) and did not
consider the effect of stroke. Although these showed an important
association between IQ at age 11 years and late-life cognitive ability,
along with the well-documented association between WMH and
late-life cognitive decline, they did not find (and were probably
underpowered to do so) an association between age 11 IQ andWMH
or other factors thatmight explainwhy lower childhood intelligence
may increase the risk of vascular dementia (Deary et al., 2010b).

We hypothesized that childhood IQ would account not just for
much of cognitive ability in older age, butwould explain some of the
apparent cross-sectionalWMHecognitive ability association in later
life, and that lower childhood IQwould be associatedwith increased
WMH. We used both qualitative (visual scores) and quantitative
(WMH volume) indicators of white matter damage, examined 3 key
cognitive domains, and used a large, narrow-age cohort tominimise
the powerful effect of age on progressing vascular disease.

2. Methods

2.1. Participants

The LBC1936 are community-dwelling surviving members of the
Scottish Mental Survey of 1947, who were all born in 1936 and sat the
Moray House Test No. 12 (MHT) of general intelligence at age 11 years.
Most were resident in Edinburgh and the surrounding Lothians when
initially recruited at a mean age of 70 years (Deary et al., 2007). Here,
we use data from the second wave of testing (mean age ¼ 72.7 years,
SD ¼ 0.7 years), at which time 700 participants underwent brain
structural magnetic resonance imaging (MRI). Of the 700, 672 had all
relevant sequences to assess WMH volumes (detailed below)
(Wardlaw et al., 2011). Participants with Mini Mental State Examina-
tion scores<24were excludedas scores below this level are commonly
taken to be indicative of possible pathological cognitive impairment.
The current analyses (see below) required complete data for all cova-
riates, resulting in a final sample of 634 adults (men, n ¼ 337, 53.2%).

Written informed consent was obtained from all participants
under protocols approved by the Lothian (REC 07/MRE00/58) and
Scottish Multicentre (MREC/01/0/56) Research Ethics Committees.
The study was conducted according to the STROBE criteria (www.
equator-network.org).

The participants provided their history of hypertension, diabetes,
hypercholesterolemia (in each case, a medical diagnosis or current
medication for theseconditions), smoking status (whichweclassified
as current/former smoker or never smoked) and of vascular disease
including medically confirmed myocardial infarction and of stroke.
Details were checked with the study medical advisor and family
doctor or hospital records where necessary. Details of the full LBC
1936 assessment protocol have been published (Deary et al., 2007).

2.2. MRI brain image acquisition and processing

All MRI data were acquired using a 1.5T GE Signa Horizon HDxt
clinical scanner (General Electric, Milwaukee, WI) operating in
researchmode and using a self-shielding gradient setwithmaximum
gradient of 33 mT/m, and an 8-channel phased-array head coil. We
acquired T1-weighted, T2-weighted, fluid-attenuated inversion
recovery (FLAIR) and T2* axial structural sequences, the full details
of which have been published previously (Wardlaw et al., 2011) but
are provided in Supplementary Table 2.

All analyses were performed with the analysts blinded to
cognitive and all clinical data, and, along with the validation, are
described in detail in Supplementary Table 2. We defined “WMH”
as the collective term for punctate or diffuse areas in the white
matter and deep gray matter of the cerebral hemispheres or in the
brainstem that were 3 mm or larger in diameter and hyperintense
with respect to normal-appearing white and gray matter on T2-
weighted and FLAIR images; some hypointensity on T1-weighted
MRI was allowed, as long as this was not as hypointense as cere-
brospinal fluid (CSF). We appreciate that not all would agree with
including deep gray and white matter hyperintensities in the term
WMH, but we are simply using it as an operational term in this
instance. We defined infarcts as cortical or large subcortical areas of
hyperintensity on T2-weighted or FLAIR, consistent with cere-
bromalacea and in a vascular distribution. Areas of tissue loss and
replacement by CSF due to infarcts (including lacunes) were also
included in the stroke lesion volume. Where stroke lesions were
occasionally contiguous with WML, the boundary between the 2
was determined by evaluation of theWML and underlying anatomy
in the contralateral hemisphere and neuroradiological knowledge.

We co-registered each subject’s structural MRI scans using FLIRT
(http://www.fmrib.ox.ac.uk/fsl) and measured intracranial volume
(ICV), total brain tissue volume, cerebrospinal fluid (CSF) volume,
and WMH volume using a validated semi-automated image
processing tool, MCMxxxVI (available for download at http://
sourceforge.net/projects/bric1936/), which implements multispec-
tral color fusion and minimum variance quantization (Valdes
Hernandez et al., 2010) and performs at least as well as other
multispectral methods (Valdes Hernandez et al., 2012a). MCMxxxVI
maps 2 or more different MRI sequences (e.g., FLAIR and T2*) that
display the tissues/lesions at different signal intensity levels to the
red/green/blue (RGB) color space. It then reduces the color levels of
the fused image to 32 clusters using minimum variance quantisa-
tion. To segment the WMH, the T2*-weighted sequence was map-
ped to the red and FLAIR was mapped to the green color space.
The subarachnoid space and ventricles appear in red and WMH
and any cortical or other discrete hyperintense infarcts appear in
yellow. Further details of the tissue segmentation are given in
Supplementary data.

We visually inspected all segmented images and manually
edited any incorrectly classified tissues. We also identified and
masked separately any visible cortical, cerebellar, or subcortical
infarcts or lacunes to exclude them from erroneously influencing
the WMH or CSF volumes. Neuroradiological experts identified
these infarcts according to established diagnostic criteria as
wedge-shaped or rounded lesions, conforming to a vascular ter-
ritory, with tissue atrophy and signal characteristics consistent
with malacic change. Infarcts, defined as above, were separated
fromWMHmanually by thresholding the FLAIR sequences using a
region-growing algorithm from Analyze 10.0 (http://www.
analyzedirect.com/Analyze/).

Three different WMH volume measures (“WMH volume,”
“percentage of WMH volume in ICV,” and “percentage of WMH
volume in brain tissue volume”) all correlated very highly (0.99 to
1.00), so we used only the “percentage of WMH in ICV” in the sta-
tistical analysis. Separately, and blinded to all other data, an expert
neuroradiologist provided a WMH visual Fazekas score in peri-
ventricular and subcortical areas (Fazekas et al., 2003) using FLAIR-
and T2-weighted sequences.

http://www.equator-network.org
http://www.equator-network.org
http://www.fmrib.ox.ac.uk/fsl
http://sourceforge.net/projects/bric1936/
http://sourceforge.net/projects/bric1936/
http://www.analyzedirect.com/Analyze/
http://www.analyzedirect.com/Analyze/
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2.3. Cognitive testing

Full descriptions of the cognitive testing have been published
(Deary et al., 2007). We used 14 subtest scores from 12 cognitive
ability tests covering domains of cognitive ability that display dif-
ferential patterns of age-related decline.

General cognitive ability (abbreviated as g) wasmeasured using 6
subtests of the Wechsler Adult Intelligence ScaledIIIUK (Wechsler,
1997a) (WAIS-IIIUK), namely Digit Symbol, Symbol Search, Digit
Span Backwards, LettereNumber Sequencing, Block Design, and
Matrix Reasoning. Here we explicitly define g based on non-verbal
cognitive test scores because tests of more fluid reasoning abilities
have been shown to showgreater declines in aging (Salthouse, 2009).
We acknowledge that some fluid reasoning tests may contain verbal
content; however, knowledge andverbal abilities, such as vocabulary,
are largely sustained in healthy aging (Salthouse, 2009). As our pri-
mary aim was to produce cognitive scores sensitive to age-related
decline, and for consistency, we elected to exclude verbal tests
from our definition of g. General memory ability (g-memory), was
measured using 5 subtest scores from the Wechsler Memory
ScaledIIIUK (Wechsler, 1997b) (WMS-IIIUK), namely Logical Memory
Immediate and Delayed Recall, Verbal Paired Associates Immediate
and Delayed Recall, and Spatial Span. WAIS-IIIUK LettereNumber
Sequencing and Digit Span Backward were also indicators of
g-memory. We note that this measure of g-memory does not include
subscales that primarily test episodic memory. Finally, general pro-
cessing speed (g-speed), was measured using Simple and Choice
Reaction Time means, a visual processing speed task called Inspec-
tionTime (Deary et al., 2007), and 2WAIS-IIIUK subtests (Digit Symbol
and Symbol Search).

A number of the cognitive subtests are used to identify more
than 1 cognitive latent variable. In estimating latent constructs of
cognitive ability, the use of a greater number of indicators in
generally preferred; hence our decision to use subtests with sub-
stantive overlap as indicators inmultiplemodels. For example, Digit
Symbol Coding is a test of information processing speed, and thus
contains elements of both reasoning (here our g factor) and pro-
cessing speed (g-speed). Thus our cognitive latent variables both
conceptually and operationally overlap. g correlated at 0.81 (p <

0.001) with g-memory and 0.49 (p < 0.001) with g-speed when
subtests were loaded on more than 1 factor. These correlations
were 0.81 (p < 0.001) and 0.89 (p < 0.001) respectively, when the
model was re-estimated with non-overlapping tests. Thus, there
are substantial correlations among the 3 latent constructs.

For childhood intelligence, we used the IQ-type score computed
from the raw age 11 MHT scores. This paper-and-pencil test was
administered in 1947 as part of the Scottish Mental Survey when
participants were a mean age of 11 years. It contains a variety of
items with an emphasis on verbal reasoning, and also some items
that involve non-verbal reasoning and arithmetic (Deary et al.,
2007).

2.4. Statistical analysis

All models were estimated using structural equation modeling
(SEM) in MPlus 6.0 (Muthén and Muthén, 2010). A full description
of basic SEM is given in Supplementary Table 3 (see also Penke and
Deary, 2010). Briefly, SEM combines factor analysis and regression
to model latent variables and the correlations and directed or
regression paths between latent variables.

In the current study, we estimated a latent WMH factor with 3
indicators, volume of WMH as a percentage of ICV and Fazekas
ratings in the periventricular and subcortical areas. Cognitive ability
factors were indicated by the sets of subtests noted above. In each
model, latent factors were identified by fixing the latent factor
variance to 1.0. We included direct paths between WMH and each
cognitive ability factor to assess the extent to which WMH predicts
later life ability. These regression paths may be thought of as partial
b coefficients and interpreted accordingly. In addition, we included
direct paths from age 11 IQ and the model covariates to both WMH
and cognitive ability latent factors. As such, any associations bet-
ween WMH and cognitive ability are present after controlling for
variance associated with prior ability and the other model
covariates.

All models were estimated based on the whole sample and also
as multi-group models, split by participants’ stroke status. Partici-
pants who had any prior history of stroke or radiologically identi-
fied cortical or subcortical infarct or lacune, or both, were
categorized as “stroke” and those who did not have any of these as
“no stroke.” The use of multi-group SEM models allows for formal
tests for any differences in the strength of associations between
variables across groups (see Supplementary Table 3).

We first established measurement invariance in our latent
constructs. If measurement invariance is established across groups,
then the latent constructs can be considered identical, and mean-
ingful comparisons across groups can be made (French and Finch,
2006; Widaman, 1993). Measurement invariance of latent con-
structs can be assessed at multiple levels, each providing a
sequentially stricter test of invariant measurement (Widaman and
Reise, 1997) Configual invariance requires the pattern of factor
loadings to be the same across groups. Metric invariance requires
the degree of the loadings to be equivalent across groups. Scalar
invariance requires the intercepts of the indicators to be the same
across groups. Here our interest was in metric invariance, because
when metric invariance is established, correlation and direct paths
between latent constructs can be investigated across groups.

Here we considered whether the cognitive abilityeWMH asso-
ciations differed by stroke status, and also whether the effects of
age 11 IQ and model covariates differed across these groups. Dif-
ferences in parameters were tested by constraining the parameter
to be equal across groups and considering the change if c2 statistic
based on a single degree of freedom.

All models were estimated using maximum likelihood estima-
tion. Model fit was evaluated based on commonly adopted cut-off
points of 0.05 for the standardized root mean residual, 0.06 for
the root mean square error of approximation, and �0.95 for the
TuckereLewis Index, and the Comparative Fit Index (Schermelleh-
Engel et al., 2003).

3. Results

3.1. Participant characteristics

The participants were a median age of 72.7 years (range,
71.0e74.2 years) at MR imaging (cognitive testing was performed
no more than a few weeks before MR imaging) (Table 1). Approx-
imately half of the participants had hypertension (49%) or hyper-
cholesterolemia (42%). Lower proportions of individuals had
diabetes (10%) or any cardiovascular disease (170, 27%) including
135 (21%) with ischemic heart disease alone; 43 participants re-
ported having had a stroke (of whom 19 also had a focal cortical,
cerebellar, or distinct subcortical stroke lesion on imaging), and an
additional 70 had imaging-only evidence of a focal cortical, cere-
bellar, or discrete subcortical stroke lesion, giving a total with any
stroke of 113 (18%). Some WMH were detectable in 97.3% of par-
ticipants. Median WMH volume for the whole group was 7.7 mL
(range 0e98.4 mL) or median of 0.53% of ICV. WMH volume in the
113 participants with history and/or radiological evidence of stroke
was larger than that in the 521 participants without stroke (median
15.3 mL vs. 7.2 mL, respectively, p < 0.001, ManneWhitney U test.).



Table 1
Characteristics of study sample

Demographics

Sex male, n (%) 337 (53.2%) 297 (46.8%)
Self-report stroke, n (%) 43 (6.8%)a

Imaging evidence stroke, n (%) 70 (11.0%)a

Total stroke, n (%) 113 (17.8%)a

Mean SD

Age (y) at MRI 72.66 0.73
Cognitive ability
Age 11 IQ (Moray House Test, No.12) 100.86 15.31
Logical Memory Total Immediate Recall WMS-III 45.68 10.43
Logical Memory Delayed Recall WMS-III 28.81 8.20
Verbal Paired Associates Immediate Recall WMS-III 2.81 2.34
Verbal Paired Associates Delayed Recall WMS-III 6.37 2.10
Spatial Span Total Score WMS-III 14.76 2.71
Simple Reaction Time Mean Score 0.27 0.05
Choice Reaction Time Mean Score 0.65 0.09
Inspection Time Total Correct Responses 111.51 11.36
Digit Symbol WAIS-IIIUK 56.42 12.16
Digit Span Backward WAIS-IIIUK 7.88 2.29
Block Design WAIS-IIIUK 34.28 10.01
Letter-Number Sequencing WAIS-IIIUK 10.98 3.00
Matrix Reasoning WAIS-IIIUK 13.45 4.88
Symbol Search WAIS-IIIUK 24.72 6.18

Median IQR (25%e75%)

Qualitative white matter lesion ratings
Fazekas: periventricular total 1.00 1.00e2.00
Fazekas: deep total 1.00 1.00e2.00

Quantitative white matter lesion variables
ICV (mL) 1448.49 1346.50e1552.72
Total WMH volume (mL) 7.74 3.64e17.20
WMH volume in ICV (%) 0.53 0.24e1.16
WMH volume in brain tissue (%) 0.68 0.31e1.47

No Yes

Health covariates: history
Diabetes, n (%) 571 (90.1%) 63 (9.9%)
Hypercholesterolemia, n (%) 365 (57.6%) 269 (42.4%)
Cardiovascular disease history (ischemic heart disease
and/or stroke) self-reported, n (%)

464 (73.2%) 170 (26.8%)b

Ischemic heart disease and also stroke self-reported, n (%) 13/170 (7.6%)
Ischemic heart disease self-reported and imaging
evidence of stroke, n (%)

22/170 (12.9%)

Hypertension, n (%) 323 (50.9%) 311 (49.1%)
History of smoking
Never smoked, n (%) 292 (46.1%)
Ex-smoker, n (%) 292 (46.1%)
Current smoker, (%). 50 (7.9%)

Key: ICV, intracranial volume; IQR, interquartile range; MRI, magnetic resonance imaging; SD, standard deviation; WAIS, Wechsler Adult Intelligence Scale; WMH, white
matter hyperintensities.

a Of the participants, 19 had both history of stroke and an infarct or hemorrhage on imaging.
b In all, 135 of 634 participants (21.3%) had ischemic heart disease alone.
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All non-categorical variables were approximately normally
distributed, with skew ranging from �1.27 to 1.70. All imaging
variables that involved WMH showed a small degree of positive
skew.

For fullness of reporting, the bivariate correlations between the
three measures of WMH and the 14 cognitive ability subtest scores
are presented in Supplementary Table 4. Correlations among the
vascular risk factors (hypercholesterolemia, diabetes, hypertension,
and smoking history) and cardiovascular disease or stroke,
WMH variables, and cognitive ability test results are shown in
Supplementary Table 5.

3.2. Structural equation modeling

All SEMs showed excellent fit to the data (Figs. 1e3). In all
models, the factor loadings for the latent variables were moderate
to large (the g cognitive tests’ loadings range from 0.49 to 0.67,
mean ¼ 0.61; the g-memory tests’ range was 0.45 to 0.69, mean ¼
0.56; the g-speed tests’ range was �0.32 to 0.84, mean ¼ 0.62; the
WMH volume indicators’ range was 0.70 to 0.94, mean 0.79). These
values show that the latent variables, g, g-memory, and g-speed,
account for between 20% and 84% of variance in the individual
cognitive ability subtests (Figs. 1e3). This supports the appropri-
ateness of estimating latent constructs. Figs. 1e3 show the final
results for g, g-memory, and g-speed, respectively. Age 11 IQ
explained the greatest proportion of variance in late-life cognitive
ability in all models, ranging from approximately 24.0% to 45.1%.
Over and above the effect of age 11 IQ, WMHs were associated
significantly in older age with g (b ¼ �0.14, p < 0.01) and g-speed
(b ¼ �0.19, p < 0.001) which accounted for approximately 2.6 and
4.4% of additional variance respectively. There was no significant
association between WMH and g-memory (b ¼ �0.05, p ¼ 0.23).

Given the similarity in the effect sizes for the g and g-speed
models, as well as the magnitude of the correlations between the



Fig. 1. Structural equation model diagram for white matter hyperintensities (WMH) predicting general cognitive ability (whole sample/no stroke/stroke). Abbreviations: g, general
cognitive ability; HYP, hypertension; ICV, intracranial volume; L.N. sequence, letterenumber sequencing; Peri., periventricular. Model fit: c2 ¼ 112.51 (50), p< 0.001; Comparative Fit
Index ¼ 0.97; TuckereLewis Index ¼ 0.96; root mean square error of approximation ¼ 0.044 (95% confidence interval ¼ 0.033e0.055); standardized root mean residual ¼ 0.034.
Values next to arrows are the standardized parameter estimates. An additional covariate path was included between Sex and Digit Symbol (b ¼ 0.19, p < 0.001). Rectangles represent
measured variables; ellipses, latent variables; single-headed arrows, directed paths or partial b coefficients; and double-headed arrows, correlations.
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latent factors, we tested the whether each of the latent constructs
acted as a mediator for the other with respect to the association
with WMH. As may be expected, the inclusion of g-speed as a
mediator of the WMH to g association, and of g in the WMH to g-
speed association, resulted in the WMH direct effects falling to
�0.01 (p > 0.05).

3.3. Structural parameter equivalence across stroke vs. no stroke

Multi-group SEM testing examined the associations across
those with and without evidence of stroke (see Supplementary
data S2 for procedure and S4 for invariance results). We found
evidence based on model fit indices for measurement invariance
across the stroke and no stroke groups for each of the latent
constructs in our models. As such, the latent constructs can be
considered to be equivalent across groups, and any differences in
structural parameter estimates are not a result of measurement
bias. No significant differences were found across the stroke and
no stroke groups in the associations between WMH and later life
cognitive abilities. However, in 2 of the 3 models (Fig. 1 [g] and
Fig. 2 [g-memory]), the association between age 11 IQ and WMH
Fig. 2. Structural equation model diagram for white matter hyperintensities (WMH) predicti
general memory ability; HYP, hypertension; ICV, intracranial volume; L.N. sequence, lette
Comparative Fit Index ¼ 0.96; TuckereLewis Index ¼ 0.95; root mean square error of appr
residual ¼ 0.040. Values next to arrows are the standardized parameter estimates. Dashe
between Sex and Spatial Span (b ¼ �0.19, p < 0.001). Rectangles represent measured var
efficients; and double-headed arrows, correlations.
was significantly different between the stroke and no stroke
groups (c2 difference test, stroke ¼ �0.24; no stroke ¼ �0.03;
Dc2 ¼ 4.18, df ¼ 1, p < 0.05), indicating that the association be-
tween lower age 11 IQ and more WMH at age 73 years was
stronger in those with stroke.

3.4. Covariate attenuations

The pattern of covariate associations with WMH suggested
that those with a history of hypertension, with lower age 11 IQ,
who were older (even within this narrow age range), and
female, had more WMH. Furthermore, hypertension, age, and
sex all had significant effects on g; sex and age both had sig-
nificant effects on g-memory; and only age was a significant
covariate for g-speed. These covariate effects accounted for
approximately 1% to 2% of the variance in later life cognitive
ability scores.

Re-estimating all models by including cardiovascular disease
and stroke, diabetes, smoking history, and cholesterol as additional
covariates did not attenuate the associations between WMH and
cognition, with any changes being at the second decimal place. The
ng general memory ability (whole sample/no stroke/stroke). Abbreviations: g-memory,
renumber sequencing; Peri., periventricular. Model fit: c2 ¼ 175.50 (62), p < 0.001;
oximation ¼ 0.054 (95% confidence interval ¼ 0.044e0.063); standardized root mean
d lines signify non-significant parameters. An additional covariate path was included
iables; ellipses, latent variables; single-headed arrows, directed paths or partial b co-



Fig. 3. Structural equation model diagram for white matter hyperintensities (WMH) predicting processing speed (whole sample/no stroke/stroke). Abbreviations: g-speed, general
processing speed; HYP, hypertension; ICV, intracranial volume; RT, reaction time; Peri., periventricular. Model fit: c2 ¼ 86.21 (40), p < 0.001; Comparative Fit Index ¼ 0.98;
TuckereLewis Index ¼ 0.97; root mean square error of approximation ¼ 0.043 (95% confidence interval ¼ 0.030e0.055); standardized root mean residual ¼ 0.029. Values next to
arrows are the standardized parameter estimates. An additional covariate path was included between Sex and Digit Symbol (b ¼ 0.15, p < 0.001) and sex and inspection time
(b ¼ �0.13, p < 0.001). Rectangles represent measured variables; ellipses, latent variables; single-headed arrows, directed paths or partial b coefficients; and double-headed arrows,
correlations.
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only significant difference was a small additional negative effect of
smoking on all 3 cognitive traits.

3.5. MMSE cut-off sensitivity analysis

To investigate the effect of using a higher cut-off value for the
MMSE, we re-ran all models using a cut-off of �26. This resulted in
the removal of 20 participants and a remaining sample of 614. Of
the 20 participants removed, 3 (2.6%) were in the stroke group and
17 (3.3%) in the no stroke group. Changes in the direct effects of
WMH on g (�0.13), g-speed (�0.18), and g-memory (�0.04) were at
the second decimal place. Furthermore, the differences in these
associations across the stroke and no stroke groups remained non-
significant, as did the significant differences in the association
between age 11 IQ and WMH in the g and g-memory models.

4. Discussion

To our knowledge, the current study is the first that uses lon-
gitudinal measures of intelligence from childhood and older age
within the same large sample of non-demented individuals, with
qualitative and quantitative assessment of WMHs and key health
covariates, to identify associations between early-life IQ and WMH
in later life, particularly among those participants with clinical or
imaging evidence of stroke, and to quantify the incremental effect
of WMH on reducing cognition in later life. Early-life cognitive
ability was the strongest single predictor of cognitive ability at
about age 73 years. The incremental effect of WMH on reducing
both general cognitive ability and processing speed but not mem-
ory in later life, after controlling for early-life cognitive ability and
health covariates, was modest but relatively robust. WMH had a
similarly negative effect on later life cognition in participants with
and without stroke.

WMH in later life were associated with lower age 11 IQ. This
associationwas stronger in participants with any evidence of stroke
who had almost double the volume of WMH compared with those
without stroke, independent of vascular risk factors. The general
pattern remained when the participants with MMSE <26 (n ¼ 20)
were excluded. Our finding warns against assuming that cognitive
status in older age is due only to being older or having an aging-
associated disease that may affect cognition, such as cerebrovas-
cular disease or incipient dementia. The findings suggest that
later-life cognitive decline, the accumulation of WMH and also of
stroke may have some of their origins in youth, perhaps through
factors that overlap with determinants of lifelong-stable differences
in general cognitive ability (Deary et al., 2010a). Speculative reasons
might include that lower intelligence might be associated with
lifestyle choices that predispose to WMH and stroke (Deary et al.,
2010b), or because higher IQ might be associated with greater
resilience to brain insults, for example, through the intelligencee
white matter integrity association (Penke et al., 2012), or socio-
economic effects that are not simply acting through greater
vascular risk factor exposure (Deans et al., 2009), or other,
completely unknown factors. These interpretations are speculative.
However, the finding is highly consistent with, and may provide an
explanation for, the evidence from cognitive epidemiology research
that finds childhood IQ is associated with a range of adverse
vascular disorders later in life, including vascular dementia (Deary
et al., 2010b; Stern, 2009). This might also explain the association
observed in other studies between educational level and late-life
cognitive ability and dementia (Dufouil et al., 2003), in which
educational level could be acting as a proxy for childhood IQ.
Although the association between age 11 IQ andWMHwas modest,
the fact that a significant association can be detected at all, across
approximately 6 decades, suggests that it is important and worthy
of further evaluation in other large population studies. It would also
explain why other, smaller studies that did examine for educational
level and WMH did not find this association. These results should
not be construed as suggesting that studies on aging, cognition,
vascular disease, and brain structure should require cognition
measured in early life, but rather as suggesting that proxymeasures
of premorbid cognitive ability should be considered. This might
include the National Adult Reading Test, which provides a good
estimate of childhood as well as of premorbid IQ whenmeasured in
older age (Deary et al., 2004, 2007); or possibly the highest
educational attainment or years of education (collected in many
previous studies of WMH; Supplementary Table 1) could be used
cautiously. Future studies should consider the role of early-life
cognitive ability in development of aging-related diseases, partic-
ularly cerebrovascular disease.

Childhood intelligence is a potential confounder of any exami-
nation of cognitive and brain aging (Deary et al., 2010b). Consistent
with previous findings, the strongest contemporaneous associations
were between WMH and g-speed (Gunning-Dixon and Raz, 2000;
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Rabbitt et al., 2007). These associations did not differ significantly
between those with or without stroke. Furthermore, in accordance
with past research, hypertension (de Leeuw et al., 2002) and smok-
ing history (Benowitz, 2003; Longstreth et al., 2005) had the largest
covariate effects on both WMH and g, but these were modest.

Across studies investigating the associations betweenWMH and
cognitive ability in later life, varied findings may result from the
method of WMH assessment (qualitatively or quantitatively), the
wide age range of participants (where increasing WMHmay reflect
advancing age; it should be noted that the effect of advancing age
was significant even within this very narrow age range cohort),
prior cognitive ability, the domains of cognition investigated across
studies, and health status such as prior stroke; not only do ischemic
stroke lesions have signal properties that confound measurement
of WMH volume (Wang et al., 2012), but stroke itself causes
cognitive impairment (Pendlebury and Rothwell, 2009).

The strengths of the current study included a large, age-
homogenous sample (about 3 times larger than those in other
studies that have examined early and late-life cognition) (Deary
et al., 2003; Murray et al., 2011, 2012); use of validated cognitive
assessment methods (Deary et al., 2007; Wardlaw et al., 2011); use
of both qualitative and quantitative WMH measures (Valdes
Hernandez et al., 2012b); and imaging methods that carefully
exclude infarcts reducing contamination of WMH volume esti-
mates. We demonstrated highly consistent associations using
either type of WMH assessment (Supplementary data) consistent
with their known strong correlation (Valdes Hernandez et al.,
2012b). Methodologically, the large sample and large number of
cognitive tests allowed us to apply structural equation modeling,
allowing the creation of error-free latent variables for cognitive
functions and WMH. As well as providing a framework within
which measurement error is accounted for, and in which both
substantive and covariate effects can be modeling simultaneously,
wewere able to apply a multi-group model and to explicitly test for
differences in associations in participants with and without evi-
dence of stroke.

This study also has limitations. First, WMH are only 1 compo-
nent of cerebral small vessel disease. Additional research should
consider other markers of small vessel disease and other markers of
all types of stroke. Second, we were reliant on participants’ self-
reported medical histories for some study covariates, although
these were checked with the medical advisor to the study. Third,
the substantial correlations between the latent factors and the re-
sults of the mediation models suggests that the effects seen in the g
and g-speed models may not be entirely independent effects.
Nonetheless, the results still show a clear and robust effect of WMH
on later-life cognitive function, but not on memory ability.

Finally, although the current sample has many strengths, it
represents a somewhat select group in that, at entry into the study
at age 70 years, participants were largely healthy and free of any
major age-related disorders. For the current analyses, this can be
seen in the comparatively low proportion of individuals who were
hypertensive. As such, a question may be asked as to the degree our
findings will generalize to other populations. However, given the
selectiveness of the current sample in the upper portions of the
health distribution, the estimates provided here are likely un-
derestimates of the true association between WMH and aspects of
cognitive function in the population, due to the impact of trunca-
tion on parameter estimates (Muthen, 1990).

In summary, here we show a novel association between early-
life IQ and WMH, a known important adverse risk factor for
stroke and dementia (Debette and Markus, 2010). Many studies of
WMH, cognition and aging have collected information on duration
of education or of educational attainment (Supplementary Table 1),
which could be used cautiously as a proxy measure of cognitive
ability in youth to explore for evidence of an association with
occurrence of WMH and/or stroke in later life. The reason for this
early-life cognitioneWMH association and its contribution to
impaired cognition and cerebrovascular disease in older age is an
important focus for further research.
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